Skip to main content

Advertisement

Log in

Feasibility of atmospheric methane removal using methanotrophic biotrickling filters

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Methane is a potent greenhouse gas with a global warming potential ~23 times that of carbon dioxide. Here, we describe the modeling of a biotrickling filtration system composed of methane-consuming bacteria, i.e., methanotrophs, to assess the utility of these systems in removing methane from the atmosphere. Model results indicate that assuming the global average atmospheric concentration of methane, 1.7 ppmv, methane removal is ineffective using these methanotrophic biofilters as the methane concentration is too low to enable cell survival. If the concentration is increased to 500–6,000 ppmv, however, similar to that found above landfills and in concentrated animal feeding operations (factory farms), 4.98–35.7 tons of methane can be removed per biofilter per year assuming biotrickling filters of typical size (3.66 m in diameter and 11.5 m in height). Using reported ranges of capital, operational, and maintenance costs, the cost of the equivalent ton of CO2 removal using these systems is $90–$910 ($2,070–$20,900 per ton of methane), depending on the influent concentration of methane and if heating is required. The use of methanotrophic biofilters for controlling methane emissions is technically feasible and, provided that either the costs of biofilter construction and operation are reduced or the value of CO2 credits is increased, can also be economically attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aizpuru A, Khammar N, Malhautier L, Fanlo JL (2003) Biofiltration for the treatment of complex mixtures of VOC: influence of the packing material. Acta Biotechnol 23:211–226

    CAS  Google Scholar 

  • Alonso C, Suidan MT, Sorial GA, Smith FL, Biswas P, Smith PJ, Brenner RC (1997) Gas treatment in trickle-bed biofilters: biomass, how much is enough? Biotechnol Bioeng 54:583–594

    CAS  PubMed  Google Scholar 

  • Amaral JA, Ren T, Knowles R (1998) Atmospheric methane consumption by forest soils and extracted bacteria at different pH values. Appl Environ Microbiol 64:2397–2402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arcangeli J, Arvin E (1999) Modelling the growth of a methanotrophic biofilm: estimation of parameters and variability. Biodegrad 10:177–191

    CAS  Google Scholar 

  • Blaha D, Bartlett K, Czepiel P, Harriss R, Crill P (1999) Natural and anthropogenic methane sources in New England. Atmos Environ 33:243–255

    CAS  Google Scholar 

  • Börjesson G, Sundh I, Tunlid A, Svensson BH (1998) Methane oxidation in landfill cover soils, as revealed by potential oxidation measurements and phospholipid fatty acid analyses. Soil Biol Biochem 30:1423–1433

    Google Scholar 

  • Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van der Werf GR, Peylin P, Brunke EG, Carouge C, Langenfelds RL, Lathière J, Papa F, Ramonet M, Schmidt M, Steele LP, Tyler SC, White J (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    CAS  PubMed  Google Scholar 

  • Bull ID, Parekh NR, Hall GH, Ineson P, Evershed RP (2000) Detection and classification of atmospheric methane oxidizing bacteria in soil. Nature 405:175–178

    CAS  PubMed  Google Scholar 

  • Carman RE, Vincent RK (1998) Measurements of soil gas and atmospheric methane content on one active and two inactive landfills in Wood County, Ohio. Environ Eng Geosci 4:317–329

    Google Scholar 

  • Cohen Y (2001) Biofiltration–the treatment of fluids by microorganisms immobilized into the filter bedding material: a review. Bioresour Technol 77:257–274

    CAS  PubMed  Google Scholar 

  • Cox HHJ, Deshusses MA (1999) Chemical removal of biomass from waste air biotrickling filters: screening of chemicals of potential interest. Water Res 33:2383–2391

    CAS  Google Scholar 

  • Cox HHJ, Deshusses MA (2002) Biotrickling filters for air pollution control. In: Bitton G (ed) The encyclopedia of environmental microbiology, vol 2. Wiley, New York, pp 782–795

    Google Scholar 

  • Cox HHJ, Moerman RE, van Baalen S, van Heiningen WNM, Doddema HJ, Harder W (1997) Performance of a styrene-degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnol Bioeng 53:259–266

    CAS  PubMed  Google Scholar 

  • Dalton H (1991) Structure and mechanism of action of the enzyme(s) involved in methane oxidation. In: Kelly JW, Baldwin TO (eds) Applications of enzyme biotechnology. Plenum, New York, pp 55–68

    Google Scholar 

  • Dever SA, Swarbrick GE, Stuetz RM (2007) Passive drainage and biofiltration of landfill gas: Australian field trial. Waste Manag 27:277–286

    CAS  PubMed  Google Scholar 

  • Dunfield PF, Conrad R (2000) Starvation alters the apparent half-saturation constant for methane in the type II methanotroph Methylocystis strain LR1. Appl Environ Microbiol 66:4136–4138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad R (1999) High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Environ Microbiol 65:1009–1014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Energy Information Administration (2007) Average retail price of electricity to ultimate customers by end-use sector. Available via DIALOG. http://www.eia.doe.gov/cneaf/electricity/epa/epat7p4.html. Accessed Nov 15 2008

  • Etheridge DM, Steele LP, Francey RJ, Langenfelds RL (1998) Atmospheric methane between 1000 A. D. and present: evidence of anthropogenic emissions and climatic variability. J Geophys Res 103:15979–15993

    CAS  Google Scholar 

  • Fry VA, Istok JD, Semprini L, O'Reilly KT, Buscheck TE (1995) Retardation of dissolved oxygen due to a trapped gas phase in porous media. Ground Water 33:391–398

    CAS  Google Scholar 

  • Gabriel D, Deshusses MA (2003) Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proc Natl Acad Sci 100:6308–6312

    CAS  PubMed  Google Scholar 

  • Gabriel D, Cox HHJ, Deshusses MA (2004) Conversion of full-scale wet scrubbers to biotrickling filters for H2S control at publicly owned treatment works. J Environ Eng 130:1110–1117

    CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartman B (1998) Investigation and Remediation: Oh Henry! (a constant). LUSTLine Bull 29:17–18

    Google Scholar 

  • Hildebrand JH (1969) Relative diffusivities of methane in water and carbon tetrachloride. Proc Natl Acad Sci 64:1329–1330

    CAS  PubMed  Google Scholar 

  • Iranpour R, Cox HHJ, Deshusses MA, Schroeder ED (2005) Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ Prog 24:254–267

    CAS  Google Scholar 

  • Kennes C, Veiga MC (2002) Inert filter media for the biofiltration of waste gases–characteristics and biomass control. Rev Environ Sci Biotechnol 1:201–214

    CAS  Google Scholar 

  • Kennes C, Cox HHJ, Doddema HJ, Harder W (1996) Design and performance of biofilters for the removal of alkylbenzene vapors. J Chem Technol Biotechnol 66:300–304

    CAS  Google Scholar 

  • Knief C, Vanitchung S, Harvey NW, Conrad R, Dunfield PF, Chidthaisong A (2005) Diversity of methanotrophic bacteria in tropical upland soils under different land uses. Appl Environ Microbiol 71:3826–3831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Keeney DR, Lim D, Dispirito AA, Semrau JD (2006) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? Appl Environ Microbiol 72:7503–7509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Google Scholar 

  • Le Texier H, Solomon S, Garcia RR (1988) The role of molecular hydrogen and methane oxidation in the water vapour budget of the stratosphere. QJR Meteorol Soc 114:281–295

    Google Scholar 

  • Lieberman RL, Rosenzweig AC (2004) Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 39:147–164

    CAS  PubMed  Google Scholar 

  • Lontoh S, Semrau JD (1998) Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase. Appl Environ Microbiol 64:1106–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melse RW, van der Werf AW (2005) Biofiltration for mitigation of methane emission from animal husbandry. Environ Sci Technol 39:5460–5468

    CAS  PubMed  Google Scholar 

  • Nikiema J, Bibeau L, Lavoie J, Brzezinski R, Vigneux J, Heitz M (2005) Biofiltration of methane: an experimental study. Chem Eng J 113:111–117

    CAS  Google Scholar 

  • Okkerse WJH, Ottengraf SPP, Diks RMM, Osinga-Kuipers B, Jacobs P (1999) Long term performance of biotrickling filters removing a mixture of volatile organic compounds from an artificial waste gas: dichloromethane and methylmethacrylate. Bioprocess Biosyst Eng 20:49–57

    CAS  Google Scholar 

  • Oldenhuis R, Vink RL, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol 55:2819–2826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parliamentary Office of Science and Technology, United Kingdom (2006) Carbon footprint of electricity generation. POST Rep. 66. London: Parliamentary Office of Science and Technology

  • Prior SD, Dalton H (1985) The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J Gen Microbiol 131:155–163

    CAS  Google Scholar 

  • Rittmann BE (1982) The effect of shear stress on biofilm loss rate. Biotechnol Bioeng 42:501–506

    Google Scholar 

  • Sipkema EM, de Koning W, Ganzeveld KJ, Janssen DB, Beenackers AACM (1998) Experimental pulse technique for the study of microbial kinetics in continuous culture. J Biotechnol 64:159–176

    CAS  Google Scholar 

  • Song J, Kinney KA (2001) Effect of directional switching frequency on toluene degradation in a vapor-phase bioreactor. Appl Microbiol Biotechnol 56:108–113

    CAS  PubMed  Google Scholar 

  • Sundh I, Mikkela C, Nilsson M, Svensson BH (1995) Potential aerobic methane oxidation in a sphagnum-dominated peatland–controlling factors and relation to methane emission. Soil Biol Biochem 27:829–837

    Google Scholar 

  • van Bodegom P, Stams F, Mollema L, Boeke S, Leffelaar P (2001) Methane oxidation and the competition for oxygen in the rice rhizosphere. Appl Environ Microbiol 67:3586–3597

    PubMed  PubMed Central  Google Scholar 

  • van Groenestijn JW, Kraakman NJR (2005) Recent developments in biological waste gas purification in Europe. Chem Eng J 113:85–91

    Google Scholar 

  • Wahlen M (1993) The global methane cycle. Annu Rev Earth Planet Sci 21:407–426

    CAS  Google Scholar 

  • Yoon S, Semrau JD (2008) Measurement and modeling of multiple substrate oxidation by methanotrophs at 20 °C. FEMS Microbiol Lett 287:156–162

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support from the Page Foundation and the US Department of Energy (DE-FC26-05NT42431) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy D. Semrau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, S., Carey, J.N. & Semrau, J.D. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters. Appl Microbiol Biotechnol 83, 949–956 (2009). https://doi.org/10.1007/s00253-009-1977-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1977-9

Keywords

Navigation