Skip to main content
Log in

Optimization of l-methionine feeding strategy for improving S-adenosyl-l-methionine production by methionine adenosyltransferase overexpressed Pichia pastoris

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The recombinant Pichia pastoris harboring an improved methionine adenosyltransferase (MAT) shuffled gene was employed to biosynthesize S-adenosyl-l-methionine (SAM). Two l-methionine (l-Met) addition strategies were used to supply the precursor: the batch addition strategy (l-Met was added separately at three time points) and the continuous feeding strategies (l-Met was fed continuously at the rate of 0.1, 0.2, and 0.5 g l−1 h−1, respectively). SAM accumulation, l-Met conversion rate, and SAM productivity with the continuous feeding strategies were all improved over the batch addition strategy, which reached 8.46 ± 0.31 g l−1, 41.7 ± 1.4%, and 0.18 ± 0.01 g l−1 h−1 with the best continuous feeding strategy (0.2 g l−1 h−1), respectively. The bottleneck for SAM production with the low l-Met feeding rate (0.1 g L−1 h−1) was the insufficient l-Met supply. The analysis of the key enzyme activities indicated that the tricarboxylic acid cycle and glycolytic pathway were reduced with the increasing l-Met feeding rate, which decreased the adenosine triphosphate (ATP) synthesis. The MAT activity also decreased as the l-Met feeding rate rose. The reduced ATP synthesis and MAT activity were probably the reason for the low SAM accumulation when the l-Met feeding rate reached 0.5 g l−1 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alp PR, Newsholme EA, Zammit VA (1976) Activities of citrate synthetase and NAD-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem 154:689–700

    Article  CAS  Google Scholar 

  • Barcelo HA, Wiemeyer JC, Sagasta CL, Macias M, Barreira JC (1990) Experimental osteoarthritis and its course when treated with S-adenosyl-l-methionine. Rev Clin Esp 187(2):74–78

    CAS  PubMed  Google Scholar 

  • Bruinenberg PM, Jonker R, van Dijken JP, Scheffers WA (1985) Utilization of formate as an additional energy source by glucose-limited chemostat cultures of Candida utilis CBS 621 and Saccharomyces cerevisiae CBS 8066: evidence for absence of transhydrogenase activity in yeasts. Arch Microbiol 142:302–306

    Article  CAS  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  Google Scholar 

  • Chan SY, Appling DR (2003) Regulation of S-adenosylmethionine levels in Saccharomyces cerevisiae. J Biol Chem 278:43051–43059

    Article  CAS  Google Scholar 

  • Chen HX, Chu J, Zhang SL, Zhuang YP, Qian JC, Wang YH, Hu XQ (2007) Intracellular expression of Vitreoscilla hemoglobin improves S-adenosylmethionine production in a recombinant Pichia pastoris. Appl Microbiol Biotechnol 74(6):1205–1212

    Article  CAS  Google Scholar 

  • Christopher SA, Melnyk S, James SJ, Kruger WD (2002) S-adenosylhomocysteine, but not homocysteine, is toxic to yeast lacking cystathionine-β synthase. Mol Genet Metab 75:335–343

    Article  CAS  Google Scholar 

  • Cregg JM, Madden KR (1988) Development of the methylotrophic yeast, Pichia pastoris, as a host system for the production of foreign proteins. Dev Ind Microbiol 29:33–41

    CAS  Google Scholar 

  • David LN, Michael MC (2004) Lehninger principles of biochemistry, 4th edn. Freeman, Madison, pp 621–623

    Google Scholar 

  • Felix A, Mireille Y, Michele N, Emilie C, Jerome D, Pascal B (2004) Identification and functional analysis of the gene encoding methionine-γ-lyase in Brevibacterium linens. Appl Environ Microbiol 70(12):7348–7354

    Article  Google Scholar 

  • Flikweert MT, Johannes P, van Dijken JP, Pronk JT (1997) Metabolic responses of pyruvate decarboxylase-negative Saccharomyces cerevisiae to glucose excess. Appl Environ Microbiol 63:3399–3404

    Article  CAS  Google Scholar 

  • He J, Deng J, Zheng Y, Gu J (2006) A synergistic effect on the production of S-adenosyl-l-methionine in Pichia pastoris by knocking in of S-adenosyl-l-methionine synthase and knocking out of cystathionine-β synthase. J Biotechnol 126(4):519–527

    Article  CAS  Google Scholar 

  • Hu XQ, Chu J, Zhang SL, Zhuang YP, Wang YH, Zhu S, Zhu ZG, Yuan ZY (2007) A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of S-adenosyl-l- methionine by methylotrophic Pichia pastoris. Enzyme Microb Technol 40:669–674

    Article  CAS  Google Scholar 

  • Hu H, Qian JC, Chu J, Wang Y, Zhuang YP, Zhang SL (2009) DNA shuffling of methionine adenosyltransferase gene leads to improved 5-adenosyl-L-methionine production in Pichia pastoris J Biotechnol. doi: https://doi.org/10.1016/j.jbiotec.2009.03.006

    Article  CAS  Google Scholar 

  • Kagkli DM, Bonnarme P, Neuvéglise C, Cogan TM, Casaregola S (2006) l-Methionine degradation pathway in Kluyveromyces lactis: identification and functional analysis of the genes encoding l-methionine aminotransferase. Appl Environ Microbiol 72(5):3330–3335

    Article  CAS  Google Scholar 

  • Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S (1997) Relationship between glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61:1109–1112

    Article  CAS  Google Scholar 

  • Li DY, Yu J, Tian LW, Ji XS, Yuan ZY (2002) Production of SAM by recombinant Pichia pastoris. Chin J Biotechnol 3:295–299

    Google Scholar 

  • Lieber CS (1999) Role of S-adenosyl-l-methionine in the treatment of liver diseases. J Hepatol 30:1155–1159

    Article  CAS  Google Scholar 

  • Liu PY, Zhu DH, Tan TW (2006) Effect of feeding pre-l-methionine on high-cell-density fermentation for S-adenosyl-l-methionine production. Chin J Biotechnol 22(2):268–272

    Google Scholar 

  • Lu SC (2000) S-Adenosylmethionine. Int J Biochem Cell Biol 32:391–395

    Article  CAS  Google Scholar 

  • Mato JM, Pajares MA, Mingorance J, Avarez L (1995) Production of S-adenosyl-methionine (SAM) by fermentation of transformed bacteria. European Patent 0647712A1

  • Megumi S, Tsutomu F, Haruyuki I (2007) Effects of accumulated S-adenosylmethionine on growth of yeast cells. Biosci Biotechnol Biochem 71(6):1595–1597

    Article  Google Scholar 

  • Mikael A, Torben LN, Jens N, John V, Jan RM, Barbel HH, Morten CKR (1999) Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation. Appl Environ Microbiol 65(6):2333–2340

    Article  Google Scholar 

  • Mincheva KP, Balutsov VM (2002) Isolation of S-adenosyl-l-methionine from an enriched Kluyveromyces lactis mutant grown in whey media. Prikl Biokhim Mikrobiol 38(4):389–392

    CAS  PubMed  Google Scholar 

  • Minning S, Serrano A, Ferrer P, Sola C, Schmid RD, Valero F (2001) Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris. J Biotechnol 86:59–70

    Article  CAS  Google Scholar 

  • Pierro DD, Tavazzi B, Perno CF, Bartolini M, Balestra E, Calio R, Giardina B, Lazzarino G (1995) An ion-pairing high-performance liquid chromatographic method for the direct simultaneous determination of nucleotides, deoxynucleotides, nicotinic coenzymes, oxypurines, nucleosides, and bases in perchloric acid cell extracts. Anal Biochem 231(2):407–412

    Article  Google Scholar 

  • Shen S, Sulter G, Jeffries TW, Cregg JM (1998) A strong nitrogen source-related promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216:93–102

    Article  CAS  Google Scholar 

  • Shiozaki S, Shimizu S, Yamada H (1986) Production of S-adenosyl-l-methionine by Saccharomyces sake. J Biotechnol 4(6):345–354

    Article  CAS  Google Scholar 

  • Shobayashi M, Mukai N, Iwashita K, Hiraga Y, Lefuji H (2005) A new method for isolation of S-adenosylmethionine (SAM)-accumulating yeast. Appl Microbiol 69:704–710

    Google Scholar 

  • Stanton RC, Seifter JL, Boxer DC, Zimmerman E, Cantley LC (1991) Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors: correlation with increased enzymatic activity. J Biol Chem 266:12442–12448

    CAS  PubMed  Google Scholar 

  • Thomas D, Rothstein R, Rosenberg N, Surdin-Kerjan Y (1988) SAM2 encodes the second methionine S-adenosyl transferase in Saccharomyces cerevisiae: physiology and regulation of both enzymes. Mol Cell Biol 8(12):5132–5139

    Article  CAS  Google Scholar 

  • Torta R, Cicolin A, Keller R (1998) Transmethylation and affective disorders. Arch Gerontol Geriatr Suppl 6:499–506

    Article  CAS  Google Scholar 

  • van der Klei IJ, Bystrykh LV, Harder W (1990) Alcohol oxidase from Hansenula polymorpha CBS 4732. Methods Enzymol 188:420

    Article  Google Scholar 

  • Wanger J, Danzin C, Huot-Olivier S, Claveric N, Palfreyman MG (1984) High performance liquid chromatographic analysis of S-adenosylmethionine and its metabolites in rat tissues: interrelationship with changes in biogenic catechol levels following treatment with l-DOPA. J Chromatogr 290:247–262

    Article  CAS  Google Scholar 

  • Yang J, Wang M, Sun J, Wei PH, Tang WG (2002) Cloning of S-adenosyl-l-methionine synthetase gene from Saccharomyces cerevisiae and its expression in E. coli. J China Pharm U 3:253–255

    Google Scholar 

  • Yu ZL, Wu XJ, Li DY, Yang S, Zhou Z, Cai J, Yuan ZY (2003) Enhancement of the production of SAM by overexpression of SAM synthetase in Pichia pastoris. Chin J Biochem Biophys 35(2):127–132

    CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to the National Basic Research Program (973 program no. 2007CB714306), the National High-Technology Research and Development Program (863 Program 2007AA100601), and the Science and Technology Commission of Shanghai Municipality (07pj14027) for their financial supports to this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangchao Qian or Ju Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Qian, J., Chu, J. et al. Optimization of l-methionine feeding strategy for improving S-adenosyl-l-methionine production by methionine adenosyltransferase overexpressed Pichia pastoris . Appl Microbiol Biotechnol 83, 1105–1114 (2009). https://doi.org/10.1007/s00253-009-1975-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1975-y

Keywords

Navigation