Advertisement

Fucoidans and fucoidanases—focus on techniques for molecular structure elucidation and modification of marine polysaccharides

  • Andrea Désirée Holtkamp
  • Svenja Kelly
  • Roland Ulber
  • Siegmund LangEmail author
Mini-Review

Abstract

The research field of fucoidans (sulphated polysaccharides from algae) and fucoidanases was strongly developing in recent years. Several different fucoidans and a few fucoidan-degrading enzymes were isolated and characterised. A high potential is seen in the medical exploitation of the fucoidans and its degradation products. This review gives an overview about the research of the last 5 years concerning fucoidan characterisation and application as well as enzyme detection, characterisation and production.

Keywords

Fucoidan Sulphated polysaccharides Fucoidan-degrading enzymes Fucoidanase Endo-type enzymatic activity 

Notes

Acknowledgement

The authors would like to thank very much the German Research Association (DFG) for kind financial support of a project on the search for and use of enzymes of marine origin for the hydrolysis of sulphated polysaccharides.

References

  1. Aisa Y et al (2005) Fucoidan induces apoptosis of human HS-sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways. Am J Hematol 78:7–14Google Scholar
  2. Albano RM, Mourao PAS (1986) Isolation, fractionation, and preliminary characterization of a novel class of sulfated glycans from the tunic of Styela plicata (Chordata Tunicata). J Biol Chem 261:758–765Google Scholar
  3. Albuquerque IRL, Queiroz KCS, Alves LG, Santos EA, Leite EL, Rocha HAO (2004) Heterofucans from Dictyota menstrualis have anticoagulant activity. Braz J Med Biol Res 37:167–171Google Scholar
  4. Alves A-P, Mulloy B, Diniz JA, Mourao PAS (1997) Sulfated polysaccharides from the egg jelly layer are species-specific inducers of acrosomal reaction in sperms of sea urchins. J Biol Chem 272:6965–6971Google Scholar
  5. Andrykovitch G, Marx I (1988) Isolation of a new polysaccharide-digesting bacterium from a salt marsh. Appl Environ Microbiol 54:1061–1062Google Scholar
  6. Angulo Y, Lomonte B (2003) Inhibitory effect of fucoidan on the activities of crotaline snake venom myotoxic phospholipases A2. Biochem Pharmacol 66:1993–2000Google Scholar
  7. Araki Y, Katoh T, Urabe M, Kishi Y, Ishizuka I, Fujiyama Y (2004) The analysis of pyridylamino-dextran sulfate oligomers by high-performance liquid chromatography and a novel detection system for sulfated polysaccharides. Oncol Rep 12:363–367Google Scholar
  8. Baba M, Snoeck R, Pauwels R, De Clercq E (1988) Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother 32:1742–1745Google Scholar
  9. Bakunina IY et al (2000) Screening of marine bacteria for fucoidanases. Microbiology (Moscow)(Translation of Mikrobiologiya) 69:303–308Google Scholar
  10. Bakunina IY et al (2002) Degradation of fucoidan by the marine proteobacterium Pseudoalteromonas citrea. Microbiology (Moscow, Russian Federation)(Translation of Mikrobiologiya) 71:41–47Google Scholar
  11. Barbeyron T, L’Haridon S, Corre E, Kloareg B, Potin P (2001) Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of Cytophaga uliginosa (Zobell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol Microbiol 51:985–997Google Scholar
  12. Beress A et al (1993) A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J Nat Products 56:478–488Google Scholar
  13. Berteau O, Mulloy B (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 13:29R–40RGoogle Scholar
  14. Berteau O, McCort I, Goasdoue N, Tissot B, Daniel R (2002) Characterization of a new alpha-L-fucosidase isolated from the marine mollusk Pecten maximus that catalyzes the hydrolysis of alpha-L-fucose from algal fucoidan (Ascophyllum nodosum). Glycobiology 12:273–282Google Scholar
  15. Bilan MI et al (2005) Effect of enzyme preparation from the marine mollusk Littorina kurila on fucoidan from the brown alga Fucus distichus. Biochemistry (Moscow) 70:1321–1326Google Scholar
  16. Bilan MI, Grachev AA, Ustuzhanina NE, Shashkov AS, Nifantiev NE, Usov AI (2002) Structure of a fucoidan from the brown seaweed Fucus evanescens C.Ag. Carbohydr Res 337:719–730Google Scholar
  17. Bilan MI, Grachev AA, Ustuzhanina NE, Shashkov AS, Nifantiev NE, Usov AI (2004) A highly regular fraction of a fucoidan from the brown seaweed Fucus distichus L. Carbohydr Res 339:511–517Google Scholar
  18. Bilan MI, Grachev AA, Shashkov AS, Nifantiev NE, Usov AI (2006) Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydr Res 341:238–245Google Scholar
  19. Bilan MI, Zakharova AN, Grachev AA, Shashkov AS, Nifantiev NE, Usov AI (2007) Polysaccharides of algae: 60. Fucoidan from the pacific brown alga Analipus japonicus (Harv.) winne (Ectocarpales, Scytosiphonaceae). Russ J Bioorgan Chem 33:38–46Google Scholar
  20. Black WAP (1954) Seasonal variation in the combined L-fucose content of the common British Laminariaceae and Fucaceae. J Sci Food Agric 5:445–448Google Scholar
  21. Black WAP, Dewar ET, Woodward FN (1952) Manufacture of algal chemicals. IV. Laboratory-scale isolation of fucoidin from brown marine algae. J Sci Food Agric 3:122–129Google Scholar
  22. Boisson-Vidal C et al (2000) Relationship between antithrombotic activities of fucans and their structure. Drug Dev Res 51:216–224Google Scholar
  23. Burtseva YV, Kusaikin MI, Sova VV, Shevchenko NM, Skobun AS, Zvyagintseva TN (2000) Distribution of fucoidan hydrolases and some glycosidases among marine invertebrates. Biologiya Morya (Vladivostok, Russian Federation) 26:429–432Google Scholar
  24. Chevolot L et al (1999) Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydr Res 319:154–165Google Scholar
  25. Chevolot L, Mulloy B, Ratiskol J, Foucault A, Colliec-Jouault S (2001) A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr Res 330:529–535Google Scholar
  26. Church FC, Meade JB, Treanor RE, Whinna HC (1989) Antithrombin activity of fucoidan. The interaction of fucoidan with heparin cofactor II, antithrombin III, and thrombin. J Biol Chem 264:3618–3623Google Scholar
  27. Colin S et al (2006) Cloning and biochemical characterization of the fucanase FcnA: definition of a novel glycoside hydrolase family specific for sulfated fucans. Glycobiology 16:1021–1032Google Scholar
  28. Corzo J, Perez-Galdona R, Leon-Barrios M, Gutierrez-Navarro AM (1991) Alcian blue fixation allows silver staining of the isolated polysaccharide component of bacterial lipopolysaccharides in polyacrylamide gels. Electrophoresis 12:439–441Google Scholar
  29. Cumashi A et al (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17:541–552Google Scholar
  30. Daniel R, Berteau O, Jozefonvicz J, Goasdoue N (1999) Degradation of algal (Ascophyllum nodosum) fucoidan by an enzymatic activity contained in digestive glands of the marine mollusc Pecten maximus. Carbohydr Res 322:291–297Google Scholar
  31. Daniel R, Berteau O, Chevolot L, Varenne A, Gareil P, Goasdoue N (2001) Regioselective desulfation of sulfated L-fucopyranoside by a new sulfoesterase from the marine mollusk Pecten maximus: application to the structural study of algal fucoidan (Ascophyllum nodosum). Eur J Biochem 268:5617–5626Google Scholar
  32. Daniel R, Chevolot L, Carrascal M, Tissot B, Mourao PAS, Abian J (2007) Electrospray ionization mass spectrometry of oligosaccharides derived from fucoidan of Ascophyllum nodosum. Carbohydr Res 342:826–834Google Scholar
  33. De Reviers B, Marbeau S, Kloareg B (1983) Attempt to interpret the structure of fucoidans in relation to their localization in the cell wall of Phaeophyceae. Cryptogam Algol 4:55–62Google Scholar
  34. Dela Cruz Thomas Edison E, Schulz Barbara E, Kubicek Christian P, Druzhinina Irina S (2006) Carbon source utilization by the marine Dendryphiella species D. arenaria and D. salina. FEMS Microbiol Ecol 58:343–353Google Scholar
  35. Descamps V et al (2006) Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar Biotechnol 8:27–39Google Scholar
  36. Deux J-F et al (2002) Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model. Arterioscler Thromb Vasc Biol 22:1604–1609Google Scholar
  37. Dische Z, Shettles LB (1948) A specific color reaction of methylpentoses and a spectrophotometric micromethod for their determination. J Biol Chem 175:595–603Google Scholar
  38. Dobashi K, Nishino T, Fujihara M, Nagumo T (1989) Isolation and preliminary characterization of fucose-containing sulfated polysaccharides with blood-anticoagulant activity from the brown seaweed Hizikia fusiforme. Carbohydr Res 194:315–320Google Scholar
  39. Duarte MER, Cardoso MA, Noseda MD, Cerezo AS (2001) Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydr Res 333:281–293Google Scholar
  40. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356Google Scholar
  41. Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW, Weiner RM (2005) Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 55:1545–1549Google Scholar
  42. Farias WRL, Valente A-P, Pereira MS, Mourao PAS (2000) Structure and anticoagulant activity of sulfated galactans: isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. J Biol Chem 275:29299–29307Google Scholar
  43. Fitton JH, Irhimeh M, Falk N (2007) Macroalgal fucoidan extracts: a new opportunity for marine cosmetics. Cosmet Toilet 122:55–56, 58, 60–62, 64Google Scholar
  44. Fujimura T et al (2000) Fucoidan is the active component of Fucus vesiculosus that promotes contraction of fibroblast-populated collagen gels. Biol Pharm Bull 23:1180–1184Google Scholar
  45. Furukawa S, Fujikawa T, Koga D, Ide A (1992a) Purification and some properties of exo-type fucoidanases from Vibrio sp. N-5. Biosci Biotechnol Biochem 56:1829–1834Google Scholar
  46. Furukawa S-I, Fujikawa T, Koga D, Ide A (1992b) Production of fucoidan-degrading enzymes, fucoidanase, and fucoidan sulfatase by Vibrio sp. N-5. Nippon Suisan Gakkaishi 58:1499–1503Google Scholar
  47. Gerbst AG et al (2004) The synthesis and NMR and conformational studies of fucoidan fragments: VI. Fragments with an a-(1–2)-linked fucobioside unit. Russ J Bioorgan Chem (Translation of Bioorganicheskaya Khimiya) 30:137–148Google Scholar
  48. Grauffel V, Kloareg B, Mabeau S, Durand P, Jozefonvicz J (1989) New natural polysaccharides with potent antithrombic activity: fucans from brown algae. Biomaterials 10:363–368Google Scholar
  49. Honya M, Mori H, Anzai M, Araki Y, Nisizawa K (1999) Monthly changes in the content of fucans, their constituent sugars and sulphate in cultured Laminaria japonica. Hydrobiologia 398/399:411–416Google Scholar
  50. Ivanova EP et al (2002) Two species of culturable bacteria associated with degradation of brown algae Fucus evanescens. Microb Ecol 43:242–249Google Scholar
  51. Jhamandas Jack H, Wie Myung B, Harris K, MacTavish D, Kar S (2005) Fucoidan inhibits cellular and neurotoxic effects of beta-amyloid (A beta) in rat cholinergic basal forebrain neurons. Eur J Neurosci 21:2649–2659Google Scholar
  52. Karlsson A, Singh SK (1999) Acid hydrolysis of sulfated polysaccharides. Desulfation and the effect on molecular mass. Carbohydr Polym 38:7–15Google Scholar
  53. Kelly S, Holtkamp A, Poth S, Lang S, Ulber R (2008) Untersuchungen zur potenziellen Fucoidanase-Aktivität von Dendryphiella arenaria. Chemie Ingenieur Technik 80:399–403Google Scholar
  54. Kiseleva MI, Shevchenko NM, Krupnova TN, Zvyagintseva TN (2005) Effect of fucoidans on the developing embryos of the sea urchin Strongylocentrotus intermedius. J Evol Biochem Physiol 41:63–72Google Scholar
  55. Kitamura K, Matsuo M, Yasui T (1992) Enzymatic degradation of fucoidan by fucoidanase from the hepatopancreas of Patinopecten yessoensis. Biosci Biotechnol Biochem 56:490–494CrossRefGoogle Scholar
  56. Klarzynski O, Descamps V, Plesse B, Yvin J-C, Kloareg B, Fritig B (2003) Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol Plant Microb Interact 16:115–122Google Scholar
  57. Kloareg B, Demarty M, Mabeau S (1986) Polyanionic characteristics of purified sulfated homofucans from brown algae. Int J Biol Macromol 8:380–386Google Scholar
  58. Kusaykin MI, Burtseva YV, Svetasheva TG, Sova VV, Zvyagintseva TN (2003) Distribution of O-glycosylhydrolases in marine invertebrates. enzymes of the marine mollusk Littorina kurila that catalyze fucoidan transformation. Biochemistry (Moscow, Russian Federation)(Translation of Biokhimiya (Moscow, Russian Federation)) 68:317–324Google Scholar
  59. Kuznetsova TA, Besednova NN, Mamaev AN, Momot AP, Shevchenko NM, Zvyagintseva TN (2003) Anticoagulant activity of fucoidan from brown algae Fucus evanescens of the Okhotsk Sea. Bull Exp Biol Med (Translation of Byulleten Eksperimental’noi Biologii i Meditsiny) 136:471–473Google Scholar
  60. Kylin H (1918) Biochemistry of seaweeds. Z Physiol Chem 101:236–247Google Scholar
  61. Lapshina LA, Reunov AV, Nagorskaya VP, Zvyagintseva TN, Shevchenko NM (2006) Inhibitory effect of fucoidan from brown alga Fucus evanescens on the spread of infection induced by tobacco mosaic virus in tobacco leaves of two cultivars. Russ J Plant Physiol 53:246–251Google Scholar
  62. Lapshina LA, Reunov AV, Nagorskaya VP, Zvyagintseva TN, Shevchenko NM (2007) Effect of fucoidan from brown alga Fucus evanescens on a formation of TMV-specific inclusions in the cells of tobacco leaves. Russ J Plant Physiol 54:111–114Google Scholar
  63. Lee J-B, Hayashi K, Hashimoto M, Nakano T, Hayashi T (2004a) Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem Pharm Bull 52:1091–1094Google Scholar
  64. Lee J-B, Hayashi K, Maeda M, Hayashi T (2004b) Antiherpetic activities of sulfated polysaccharides from green algae. Planta Med 70:813–817Google Scholar
  65. Li B, Wei X-J, Sun J-L, Xu S-Y (2006) Structural investigation of a fucoidan containing a fucose-free core from the brown seaweed, Hizikia fusiforme. Carbohydr Res 341:1135–1146Google Scholar
  66. Mabeau S, Kloareg B, Joseleau JP (1990) Fractionation and analysis of fucans from brown algae. Phytochemistry 29:2441–2445Google Scholar
  67. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339:69–72Google Scholar
  68. Medcalf DG, Larsen B (1977) Fucose-containing polysaccharides in the brown algae Ascophyllum nodosum and Fucus vesiculosus. Carbohydr Res 59:531–537Google Scholar
  69. Mian AJ, Percival E (1973a) Carbohydrates of the brown seaweeds Himanthalia lorea and Bifurcaria bifurcata. II. Structural studies of the fucans. Carbohydr Res 26:147–161Google Scholar
  70. Mian AJ, Percival E (1973b) Carbohydrates of the brown seaweeds Himanthalia lorea, Bifurcaria bifurcata, and Padina pavonia. 1. Extraction and fractionation. Carbohydr Res 26:133–146Google Scholar
  71. Miller GL (1959) Dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428Google Scholar
  72. Min H, Cowman MK (1986) Combined Alcian blue and silver staining of glycosaminoglycans in polyacrylamide gels: application to electrophoretic analysis of molecular weight distribution. Anal Biochem 155:275–285Google Scholar
  73. Moeller HJ, Heinegaard D, Poulsen JH (1993) Combined Alcian blue and silver staining of subnanogram quantities of proteoglycans and glycosaminoglycans in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 209:169–175Google Scholar
  74. Mulloy B (2002) Fucose-based polysaccharides of marine origin: research tools with therapeutic potential. In: Nantes Proceedings, pp 105–111Google Scholar
  75. Mulloy B, Ribeiro A-C, Alves A-P, Vieira RP, Mourao PAS (1994) Sulfated fucans from echinoderms have a regular tetrasaccharide repeating unit defined by specific patterns of sulfation at the 0–2 and 0–4 positions. J Biol Chem 269:22113–22123Google Scholar
  76. Nardella A, Chaubet F, Boisson-Vidal C, Blondin C, Durand P, Jozefonvicz J (1996) Anticoagulant low molecular wt. fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from the brown seaweed Ascophyllum nodosum. Carbohydr Res 289:201–208Google Scholar
  77. Nishino T, Nishioka C, Ura H, Nagumo T (1994) Isolation and partial characterization of a novel amino sugar-containing fucan sulfate from commercial Fucus vesiculosus fucoidan. Carbohydr Res 255:213–224Google Scholar
  78. Obluchinskaya ED, Minina SA (2004) Development of extraction technology and characterization of extract from wrack algae grist. Pharm Chem J (Translation of Khimiko-Farmatsevticheskii Zhurnal) 38:323–326Google Scholar
  79. Patankar MS, Oehninger S, Barnett T, Williams RL, Clark GF (1993) A revised structure for fucoidan may explain some of its biological activities. J Biol Chem 268:21770–21776Google Scholar
  80. Percival EGV, Ross AG (1950) Fucoidin. I. The isolation and purification of fucoidin from brown seaweeds. J Chem Soc 145:717–720Google Scholar
  81. Pereira MS, Mulloy B, Mourao PAS (1999) Structure and anticoagulant activity of sulfated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J Biol Chem 274:7656–7667Google Scholar
  82. Pomin VH, Pereira MS, Valente A-P, Tollefsen DM, Pavao MSG, Mourao PAS (2005) Selective cleavage and anticoagulant activity of a sulfated fucan: stereospecific removal of a 2-sulfate ester from the polysaccharide by mild acid hydrolysis, preparation of oligosaccharides, and heparin cofactor II-dependent anticoagulant activity. Glycobiology 15:369–381Google Scholar
  83. Ponce NMA, Pujol CA, Damonte EB, Flores ML, Stortz CA (2003) Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr Res 338:153–165Google Scholar
  84. Preeprame S, Hayashi K, Lee J-B, Sankawa U, Hayashi T (2001) A novel antivirally active fucan sulfate derived from an edible brown alga, Sargassum horneri. Chem Pharm Bull 49:484–485Google Scholar
  85. Qiu X, Amarasekara A, Doctor V (2006) Effect of oversulfation on the chemical and biological properties of fucoidan. Carbohydr Polym 63:224–228Google Scholar
  86. Ribeiro AC, Vieira RP, Mourao PAS, Mulloy B (1994) A sulfated alpha-L-fucan from sea cucumber. Carbohydr Res 255:225–240Google Scholar
  87. Ruperez P, Ahrazem O, Leal JA (2002) Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50:840–845Google Scholar
  88. Sakai T, Kimura H, Kato I (2002) A marine strain of Flavobacteriaceae utilizes brown seaweed fucoidan. Mar Biotechnol 4:399–405Google Scholar
  89. Sakai T, Ishizuka K, Kato I (2003a) Isolation and characterization of a fucoidan-degrading marine bacterium. Mar Biotechnol 5:409–416Google Scholar
  90. Sakai T, Ishizuka K, Shimanaka K, Ikai K, Kato I (2003b) Structures of oligosaccharides derived from Cladosiphon okamuranus fucoidan by digestion with marine bacterial enzymes. Mar Biotechnol 5:536–544Google Scholar
  91. Sakai T, Kimura H, Kato I (2003c) Purification of sulfated fucoglucuronomannan lyase from bacterial strain of Fucobacter marina and study of appropriate conditions for its enzyme digestion. Mar Biotechnol 5:380–387Google Scholar
  92. Sakai T, Kimura H, Kojima K, Shimanaka K, Ikai K, Kato I (2003d) Marine bacterial sulfated fucoglucuronomannan (SFGM) lyase digests brown algal SFGM into trisaccharides. Mar Biotechnol 5:70–78Google Scholar
  93. Sakai T, Kawai T, Kato I (2004) Isolation and characterization of a fucoidan-degrading marine bacterial strain and its fucoidanase. Mar Biotechnol 6:335–346Google Scholar
  94. Sasaki K, Sakai T, Kojima K, Nakayama S, Nakanishi Y, Kato I (1996) Partial purification and characterization of an enzyme releasing 2-sulfo-alpha-L-fucopyranose from 2-sulfo-alpha-L-fucopyranosyl-(1->2)pyridylaminated fucose from a sea urchin, Strongylocentrotus nudus. Biosci Biotechnol Biochem 60:666–668Google Scholar
  95. Senni K et al (2006) Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis. Arch Biochem Biophys 445:56–64Google Scholar
  96. Shevchenko NM, Anastyuk SD, Gerasimenko NI, Dmitrenok PS, Isakov VV, Zvyagintseva TN (2007) Polysaccharide and lipid composition of the brown seaweed Laminaria gurjanovae. Russ J Bioorgan Chem 33:88–98Google Scholar
  97. Siddhanta AK, Murthy ASK (2001) Bioactive polysaccharides from marine brown algae (Phaeophyceae). J Indian Chem Soc 78:431–437Google Scholar
  98. Silva TMA (2005) Partial characterization and anticoagulant activity of a heterofucan from the brown seaweed Padina gymnospora. Braz J Med Biol Res 38:523–533 Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica... [et al.]Google Scholar
  99. Skibola Christine F (2004) The effect of Fucus vesiculosus, an edible brown seaweed, upon menstrual cycle length and hormonal status in three pre-menopausal women: a case report. BMC Complement Altern Med 4:10Google Scholar
  100. Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23Google Scholar
  101. Suppiramaniam V, Vaithianathan T, Manivannan K, Dhanasekaran M, Parameshwaran K, Bahr BA (2006) Modulatory effects of dextran sulfate and fucoidan on binding and channel properties of AMPA receptors isolated from rat brain. Synapse (Hoboken, NJ, United States) 60:456–464Google Scholar
  102. Takayama M, Koyama N, Sakai T, Kato I (2002) Enzymes capable of degrading a sulfated-fucose-containing polysaccharide and their encoding genes. US Patent 6489155Google Scholar
  103. Tako M, Yoza E, Tohma S (2000) Chemical characterization of acetyl fucoidan and alginate from commercially cultured Cladosiphon okamuranus. Bot Mar 43:393–398Google Scholar
  104. Thanassi NM, Nakada HI (1967) Enzymic degradation of fucoidan by enzymes from the hepatopancreas of abalone, Haliotus species. Arch Biochem Biophys 118:172–177Google Scholar
  105. Thorlacius H, Vollmar B, Seyfert UT, Vestweber D, Menger MD (2000) The polysaccharide fucoidan inhibits microvascular thrombus formation independently from P- and L-selectin function in vivo. Eur J Clin Investig 30:804–810Google Scholar
  106. Tissot B, Daniel R (2003) Biological properties of sulfated fucans: the potent inhibiting activity of algal fucoidan against the human complement system. Glycobiology 13:29G–30GGoogle Scholar
  107. Tissot B, Salpin J-Y, Martinez M, Gaigeot M-P, Daniel R (2006) Differentiation of the fucoidan sulfated L-fucose isomers constituents by CE-ESIMS and molecular modeling. Carbohydr Res 341:598–609Google Scholar
  108. Urvantseva AM, Bakunina IY, Nedashkovskaya OI, Kim SB, Zvyagintseva TN (2006) Distribution of intracellular fucoidan hydrolases among marine bacteria of the family Flavobacteriaceae. Appl Biochem Microbiol 42:484–491Google Scholar
  109. Vilela-Silva A-CES, Alves A-P, Valente A-P, Vacquier VD, Mourao PAS (1999) Structure of the sulfated alpha-L-fucan from the egg jelly coat of the sea urchin Strongylocentrotus franciscanus: patterns of preferential 2-O- and 4-O-sulfation determine sperm cell recognition. Glycobiology 9:927–933Google Scholar
  110. Volpi N, Maccari F (2006) Electrophoretic approaches to the analysis of complex polysaccharides. J Chromatogr B Analyt Technol Biomed Life Sci 834:1–13Google Scholar
  111. Wardi AH, Allen WS (1972) Alcian blue staining of glycoproteins. Anal Biochem 48:621–623Google Scholar
  112. Witvrouw M, De Clercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29:497–511Google Scholar
  113. Wu K et al (2002) Production of fucoidanase from marine fungus Dendryphiella arenaria TM 94 by solid substrate fermentation using marine algae resources. Nantes Proceedings, pp 122–133Google Scholar
  114. Xue C-H et al (2001) Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica. J Appl Phycol 13:67–70Google Scholar
  115. Yaphe W, Morgan K (1959) Enzymic hydrolysis of fucoidin by Pseudomonas atlantica and Pseudomonas carrageenovora. Nature (London, United Kingdom) 183:761–762Google Scholar
  116. Ye J et al (2005) Enzyme-digested fucoidan extracts derived from seaweed Mozuku of Cladosiphon novae-caledoniae kylin inhibit invasion and angiogenesis of tumor cells. Cytotechnology 47:117–126Google Scholar
  117. Zhang Q, Li N, Zhao T, Qi H, Xu Z, Li Z (2005) Fucoidan inhibits the development of proteinuria in active Heymann nephritis. Phytotherapy Research 19:50–53Google Scholar
  118. Zvyagintseva TN et al (1999) A new procedure for the separation of water-soluble polysaccharides from brown seaweeds. Carbohydr Res 322:32–39Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Andrea Désirée Holtkamp
    • 1
  • Svenja Kelly
    • 2
  • Roland Ulber
    • 2
  • Siegmund Lang
    • 1
    Email author
  1. 1.Institute of Biochemistry and Biotechnology, Department of BiotechnologyTechnical University of BraunschweigBraunschweigGermany
  2. 2.Institute of Bioprocess Engineering, Department of Mechanical and Process EngineeringUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations