Skip to main content

Advertisement

Log in

The dual role of bacteriocins as anti- and probiotics

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacteria employed in probiotic applications help to maintain or restore a host’s natural microbial floral. The ability of probiotic bacteria to successfully outcompete undesired species is often due to, or enhanced by, the production of potent antimicrobial toxins. The most commonly encountered of these are bacteriocins, a large and functionally diverse family of antimicrobials found in all major lineages of Bacteria. Recent studies reveal that these proteinaceous toxins play a critical role in mediating competitive dynamics between bacterial strains and closely related species. The potential use of bacteriocin-producing strains as probiotic and bioprotective agents has recently received increased attention. This review will report on recent efforts involving the use of such strains, with a particular focus on emerging probiotic therapies for humans, livestock, and aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alderman DJ, Hastings TS (1998) Antibiotic use in aquaculture: development of antibiotic resistance—potential for consumer health risks. Int J Food Sci Technol 33:139–155

    Article  CAS  Google Scholar 

  • Altenhoefer A, Oswald S, Sonnenborn U, Enders C, Schulze J, Hacker J, Oelschlaeger TA (2004) The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol 40:223–229

    Article  CAS  PubMed  Google Scholar 

  • Andreatti Filho RL, Higgins JP, Higgins SE, Gaona G, Wolfenden AD, Tellez G, Hargis BM (2007) Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar enteritidis in vitro and in vivo. Poult Sci 86:1904–1909

    Article  CAS  PubMed  Google Scholar 

  • Aroutcheva AA, Simoes JA, Faro S (2001) Antimicrobial protein produced by vaginal Lactobacillus acidophilus that inhibits Gardnerella vaginalis. Infect Dis Obstet Gynecol 9:33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslim B, Kilic E (2006) Some probiotic properties of vaginal lactobacilli isolated from healthy women. Jpn J Infect Dis 59:249–253

    PubMed  Google Scholar 

  • Audisio MC, Oliver G, Apella MC (2000) Protective effect of Enterococcus faecium J96, a potential probiotic strain, on chicks infected with Salmonella pullorum. J Food Prot 63:1333–1337

    Article  Google Scholar 

  • Avonts L, De Vuyst L (2001) Antimicrobial potential of probiotic lactic acid bacteria. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 66:543–550

    PubMed  CAS  Google Scholar 

  • Balakrishnan M, Simmonds RS, Tagg JR (2000) Dental caries is a preventable infectious disease. Aust Dent J 45:235–245

    Article  CAS  PubMed  Google Scholar 

  • Baquero F, Moreno F (1984) The Microcins. FEMS Microbiol Lett 23:117–124

    Article  CAS  Google Scholar 

  • Barnes B, Sidhu H, Gordon DM (2007) Host gastro-intestinal dynamics and the frequency of colicin production by Escherichia coli. Microbiology 153:2823–2827

    Article  CAS  PubMed  Google Scholar 

  • Barrett E, Hayes M, O’Connor P, Gardiner G, Fitzgerald GF, Stanton C, Ross RP, Hill C (2007) Salivaricin P, one of a family of two-component antilisterial bacteriocins produced by intestinal isolates of Lactobacillus salivarius. Appl Environ Microbiol 73:3719–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengmark S (2001) Pre-, pro- and synbiotics. Curr Opin Clin Nutr Metab Care 4:571–579

    Article  CAS  PubMed  Google Scholar 

  • Braden CR (2006) Salmonella enterica serotype Enteritidis and eggs: a national epidemic in the United States. Clin Infect Dis 43:512–517

    Article  PubMed  Google Scholar 

  • Brashears MM, Galyean ML, Loneragan GH, Mann JE, Killinger-Mann K (2003a) Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials. J Food Prot 66:748–754

    Article  CAS  PubMed  Google Scholar 

  • Brashears MM, Jaroni D, Trimble J (2003b) Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. J Food Prot 66:355–363

    Article  CAS  PubMed  Google Scholar 

  • Braun V, Pilsl H, Groß P (1994) Colicins: structures, modes of actions, transfer through membranes, and evolution. Arch Microbiol 161:199–206

    Article  CAS  PubMed  Google Scholar 

  • Breukink E, de Kruijff B (1999) The lantibiotic nisin, a special case or not? Biochim Biophys Acta 1462:223–234

    Article  CAS  PubMed  Google Scholar 

  • Brook I (2005) The role of bacterial interference in otitis, sinusitis and tonsillitis. Otolaryngol Head Neck Surg 133:139–146

    Article  PubMed  Google Scholar 

  • Burton JP, Chilcott CN, Tagg JR (2005) The rationale and potential for the reduction of oral malodour using Streptococcus salivarius probiotics. Oral Dis 11(Suppl 1):29–31

    Article  PubMed  Google Scholar 

  • Burton JP, Chilcott CN, Moore CJ, Speiser G, Tagg JR (2006a) A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodour parameters. J Appl Microbiol 100:754–764

    Article  CAS  PubMed  Google Scholar 

  • Burton JP, Wescombe PA, Moore CJ, Chilcott CN, Tagg JR (2006b) Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl Environ Microbiol 72:3050–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callaway TR, Anderson RC, Edrington TS, Genovese KJ, Bischoff KM, Poole TL, Jung YS, Harvey RB, Nisbet DJ (2004) What are we doing about Escherichia coli O157:H7 in cattle? J Anim Sci 82(E-Suppl):E93–E99

    PubMed  Google Scholar 

  • Cao Z, Klebba PE (2002) Mechanisms of colicin binding and transport through outer membrane porins. Biochimie 84:399–412

    Article  CAS  PubMed  Google Scholar 

  • Cappelletty D (1998) Microbiology of bacterial respiratory infections. Pediatr Infect Dis J 17:S55–S61

    Article  CAS  PubMed  Google Scholar 

  • Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28:281–370

    Article  CAS  PubMed  Google Scholar 

  • Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao L, BR Levin (1981) Structured habitats and the evolution of anti-competitor toxins in bacteria. PNAS 78:6324–6328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheigh CI, Pyun YR (2005) Nisin biosynthesis and its properties. Biotechnol Lett 27:1641–1648

    Article  CAS  PubMed  Google Scholar 

  • Choi HJ, Lee HS, Her S, Oh DH, Yoon SS (1999) Partial characterization and cloning of leuconocin J, a bacteriocin produced by Leuconostoc sp. J2 isolated from the Korean fermented vegetable Kimchi. J Appl Microbiol 86:175–181

    Article  CAS  PubMed  Google Scholar 

  • Cintas LM, Casaus MP, Herranz C, Nes I, Hernandez PE (2001) Review: bacteriocins of lactic acid bacteria. Food Sci Technol Int 7:281–305

    Article  CAS  Google Scholar 

  • Cintas LM, Casaus P, Havarstein LS, Hernandez PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP, Cerdeno-Tarraga AM, Parkhill J, Flynn S, O’Sullivan GC, Collins JK, Higgins D, Shanahan F, Fitzgerald GF, van Sinderen D, O’Toole PW (2006) Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci U S A 103:6718–6723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke DJ, Morris JG (1976) Butyricin 7423: a bacteriocin produced by Clostridium butyricum NCIB7423. J Gen Microbiol 95:67–77

    Article  CAS  PubMed  Google Scholar 

  • Coconnier MH, Lievin V, Hemery E, Servin AL (1998) Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl Environ Microbiol 64:4573–4580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CGM (2007) Bacteriocin production as a mechanism for the antfinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 104:7617–7621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corripio-Miyar Y, Mazorra de Quero C, Treasurer JW, Ford L, Smith PD, Secombes CJ (2007) Vaccination experiments in the gadoid haddock, Melanogrammus aeglefinus L., against the bacterial pathogen Vibrio anguillarum. Vet Immunol Immunopathol 118:147–153

    Article  CAS  PubMed  Google Scholar 

  • Cross ML (2002) Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol Med Microbiol 34:245–253

    Article  CAS  PubMed  Google Scholar 

  • Cruchet S, Obregon MC, Salazar G, Diaz E, Gotteland M (2003) Effect of the ingestion of a dietary product containing Lactobacillus johnsonii La1 on Helicobacter pylori colonization in children. Nutrition 19:716–721

    Article  PubMed  Google Scholar 

  • Cunningham MW (2000) Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13:470–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cursino L, Smajs D, Smarda J, Nardi RM, Nicoli JR, Chartone-Souza E, Nascimento AM (2006) Exoproducts of the Escherichia coli strain H22 inhibiting some enteric pathogens both in vitro and in vivo. J Appl Microbiol 100:821–829

    Article  CAS  PubMed  Google Scholar 

  • Czerucka D, Piche T, Rampal P (2007) Review article: yeast as probiotics—Saccharomyces boulardii. Aliment Pharmacol Ther 26:767–778

    Article  CAS  PubMed  Google Scholar 

  • Deplancke B, Gaskins HR (2002) Redox control of the transsulfuration and glutathione biosynthesis pathways. Curr Opin Clin Nutr Metab Care 5:85–92

    Article  CAS  PubMed  Google Scholar 

  • Dierksen KP, Inglis M, Tagg JR (2000) High pharyngeal carriage rates of Streptococcus pyogenes in Dunedin school children with a low incidence of rheumatic fever. N Z Med J 113:496–499

    PubMed  CAS  Google Scholar 

  • Dierksen KP, Moore CJ, Inglis M, Wescombe PA, Tagg JR (2007) The effect of ingestion of milk supplemented with salivaricin A-producing Streptococcus salivarius on the bacteriocin-like inhibitory activity of streptococcal populations on the tongue. FEMS Microbiol Ecol 59:584–591

    Article  CAS  PubMed  Google Scholar 

  • Diez-Gonzalez F (2007) Use of bacteriocin in livestock. In: Riley MA, Gillor O (eds) Research and applications in bacteriocins. Horizon Bioscience, Norfolk, pp 117–129

    Google Scholar 

  • Diez-Gonzalez F, Russell JB (1997) The ability of Escherichia coli O157:H7 to decrease its intracellular pH and resist the toxicity of acetic acid. Microbiology 143(Pt 4):1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Dobson AE, Sanozky-Dawes RB, Klaenhammer TR (2007) Identification of an operon and inducing peptide involved in the production of lactacin B by Lactobacillus acidophilus. J Appl Microbiol 103:1766–1778

    Article  CAS  PubMed  Google Scholar 

  • Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufour A, Hindre T, Haras D, Le Pennec JP (2007) The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol Rev 31:134–167

    Article  CAS  PubMed  Google Scholar 

  • Duquesne S, Destoumieux-Garzon D, Peduzzi J, Rebuffat S (2007a) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24:708–734

    Article  CAS  PubMed  Google Scholar 

  • Duquesne S, Petit V, Peduzzi J, Rebuffat S (2007b) Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria. J Mol Microbiol Biotechnol 13:200–209

    Article  CAS  PubMed  Google Scholar 

  • Durrett R, Levin S (1997) Allelopathy in spatially distributed populations. J Theor Biol 185:165–171

    Article  CAS  PubMed  Google Scholar 

  • Eijsink VG, Axelsson L, Diep DB, Havarstein LS, Holo H, Nes IF (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81:639–654

    Article  CAS  PubMed  Google Scholar 

  • Eschenbach DA, Davick PR, Williams BL, Klebanoff SJ, Young-Smith K, Critchlow CM, Holmes KK (1989) Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. J Clin Microbiol 27:251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falagas ME, Betsi GI, Athanasiou S (2007) Probiotics for the treatment of women with bacterial vaginosis. Clin Microbiol Infect 13:657–664

    Article  CAS  PubMed  Google Scholar 

  • FAO/WHO (2001) Evaluation of Health and Nutritional Properties of Probiotics in Food. Córdoba, Argentina Food and Agriculture Organization of the United Nations and World Health Organisation pp 1–34

  • Ferrer S, Viejo MB, Guasch JF, Enfedaque J, Regue M (1996) Genetic evidence for an activator required for induction of colicin-like bacteriocin 28b production in Serratia marcescens by DNA-damaging agents. J Bacteriol 178:951–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flachowsky G (2002) Efficiency of energy and nutrient use in the production of edible protein of animal origin. J Appl Anim Res 22:1–24

    Article  Google Scholar 

  • Fredericq P (1946) Sur la pluralité des récepteurs d’antibiose de E. coli. CR Soc Biol (Paris) 140:1189–1194

    Google Scholar 

  • Garneau S, Martin NI, Vederas JC (2002) Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84:577–592

    Article  CAS  PubMed  Google Scholar 

  • Gatesoupe FJ (1999) The use of probiotics in aquaculture. Aquaculture 180:147–165

    Article  Google Scholar 

  • Gatesoupe FJ (2008) Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. J Mol Microbiol Biotechnol 14:107–114

    Article  CAS  PubMed  Google Scholar 

  • Gibson LF, Woodworth J, George AM (1998) Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. Aquaculture 169:111–120

    Article  Google Scholar 

  • Gillor O (2007) Bacteriocins’ role in bacterial communication. In: Riley MA, Chavan M (eds) Bacteriocins: ecology and evolution. Springer, Berlin, pp 135–146

    Chapter  Google Scholar 

  • Gillor O, Kirkup BC, Riley MA (2004) Colicins and microcins: the next generation antimicrobials. Adv Appl Microbiol 54:129–146

    Article  CAS  PubMed  Google Scholar 

  • Gobbetti M, De Angelis M, Di Cagno R, Minervini F, Limitone A (2007) Cell–cell communication in food related bacteria. Int J Food Microbiol 120:34–45

    Article  CAS  PubMed  Google Scholar 

  • Gordon DM, O’Brien CL (2006) Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology 152:3239–3244

    Article  CAS  PubMed  Google Scholar 

  • Gordon DM, Riley MA (1999) A theoretical and empirical investigation of the invasion dynamics of colicinogeny. Microbiology 145(Pt 3):655–661

    Article  CAS  PubMed  Google Scholar 

  • Gordon D, Riley MA, Pinou T (1998) Temporal changes in the frequency of colicinogeny in Escherichia coli from house mice. Microbiology 144:2233–2240

    Article  CAS  PubMed  Google Scholar 

  • Gordon DM, Oliver E, Littlefield-Wyer J (2007) The diversity of bacteriocins in Gram-negative bacteria. In: Riley MA, Chavan M (eds) Bacteriocins: ecology and evolution. Springer, Berlin, pp 5–18

    Chapter  Google Scholar 

  • Gotteland M, Cruchet S (2003) Suppressive effect of frequent ingestion of Lactobacillus johnsonii La1 on Helicobacter pylori colonization in asymptomatic volunteers. J Antimicrob Chemother 51:1317–1319

    Article  CAS  PubMed  Google Scholar 

  • Gotteland M, Andrews M, Toledo M, Munoz L, Caceres P, Anziani A, Wittig E, Speisky H, Salazar G (2008) Modulation of Helicobacter pylori colonization with cranberry juice and Lactobacillus johnsonii La1 in children. Nutrition 24:421–426

    Article  PubMed  Google Scholar 

  • Granger M, van Reenen CA, Dicks LM (2008) Effect of gastro-intestinal conditions on the growth of Enterococcus mundtii ST4SA, and production of bacteriocin ST4SA recorded by real-time PCR. Int J Food Microbiol 123:277–280

    Article  CAS  PubMed  Google Scholar 

  • Gratia A (1925) Sur un remarquable exemple d’antagonisme entre deux souches de coilbacille. Comp Rend Soc Biol 93:1040–1041

    Google Scholar 

  • Guasch J, Enfedaque J, Ferrer S, Gargallo D, Regue M (1995) Bacteriocin 28b, a chromosomally encoded bacteriocin produced by most Serratia marcesens biotypes. Res Microbiol 146:477–483

    Article  CAS  PubMed  Google Scholar 

  • Han KS, Kim Y, Kim SH, Oh S (2007) Characterization and purification of acidocin 1B, a bacteriocin produced by Lactobacillus acidophilus GP1B. J Microbiol Biotechnol 17:774–783

    PubMed  CAS  Google Scholar 

  • Hechard Y, Sahl HG (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84:545–557

    Article  CAS  PubMed  Google Scholar 

  • Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR (2007) The diversity of bacteriocins in Gram-positive bacteria. In: Riley MA, Chavan M (eds) Bacteriocins: ecology and evolution. Springer, Berlin, pp 45–92

    Chapter  Google Scholar 

  • Henker J, Laass M, Blokhin BM, Bolbot YK, Maydannik VG, Elze M, Wolff C, Schulze J (2007) The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhoea in infants and toddlers. Eur J Pediatr 166:311–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Hillman JD (2002) Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie Van Leeuwenhoek 82:361–366

    Article  CAS  PubMed  Google Scholar 

  • Hillman JD, Socransky SS (1987) Replacement therapy of the prevention of dental disease. Adv Dent Res 1:119–125

    Article  CAS  PubMed  Google Scholar 

  • Hillman JD, Yaphe BI, Johnson KP (1985) Colonization of the human oral cavity by a strain of Streptococcus mutans. J Dent Res 64:1272–1274

    Article  CAS  PubMed  Google Scholar 

  • Hillman JD, Dzuback AL, Andrews SW (1987) Colonization of the human oral cavity by a Streptococcus mutans mutant producing increased bacteriocin. J Dent Res 66:1092–1094

    Article  CAS  PubMed  Google Scholar 

  • Hillman JD, Brooks TA, Michalek SM, Harmon CC, Snoep JL, van Der Weijden CC (2000) Construction and characterization of an effector strain of Streptococcus mutans for replacement therapy of dental caries. Infect Immun 68:543–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillman JD, Mo J, McDonell E, Cvitkovitch D, Hillman CH (2007) Modification of an effector strain for replacement therapy of dental caries to enable clinical safety trials. J Appl Microbiol 102:1209–1219

    Article  CAS  PubMed  Google Scholar 

  • Horz HP, Meinelt A, Houben B, Conrads G (2007) Distribution and persistence of probiotic Streptococcus salivarius K12 in the human oral cavity as determined by real-time quantitative polymerase chain reaction. Oral Microbiol Immunol 22:126–130

    Article  CAS  PubMed  Google Scholar 

  • Hussein HS (2007) Prevalence and pathogenicity of Shiga toxin-producing Escherichia coli in beef cattle and their products. J Anim Sci 85:E63–72

    Article  CAS  PubMed  Google Scholar 

  • Hussein HS, Bollinger LM (2005) Prevalence of Shiga toxin-producing Escherichia coli in beef cattle. J Food Prot 68:2224–2241

    Article  PubMed  Google Scholar 

  • Ikari NS, Kenta DM, Young VM (1969) Interaction in the germfree mouse intestine of colicinogenic and colicin-sensitive microorganisms. Proc Soc Exp Med 130:1280–1284

    Article  CAS  Google Scholar 

  • Irianto A, Austin B (2002a) Probiotics in aquaculture. J Fish Dis 25:633–642

    Article  Google Scholar 

  • Irianto A, Austin B (2002b) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25:333–350

    Article  CAS  Google Scholar 

  • Irianto A, Robertson PA, Austin B (2003) Oral administration of formalin-inactivated cells of Aeromonas hydrophila A3–51 controls infection by atypical A. salmonicida in goldfish, Carassius auratus (L.). J Fish Dis 26:117–120

    Article  CAS  PubMed  Google Scholar 

  • James R, Penfold CN, Moore GR, Kleanthous C (2002) Killing of E. coli cells by E group nuclease colicins. Biochimie 84:381–389

    Article  CAS  PubMed  Google Scholar 

  • Joerger RD (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult Sci 82:640–647

    Article  CAS  PubMed  Google Scholar 

  • Juarez Tomas MS, Bru E, Wiese B, de Ruiz Holgado AA, Nader-Macias ME (2002) Influence of pH, temperature and culture media on the growth and bacteriocin production by vaginal Lactobacillus salivarius CRL 1328. J Appl Microbiol 93:714–724

    Article  CAS  PubMed  Google Scholar 

  • Juarez Tomas MS, Ocana VS, Nader-Macias ME (2004) Viability of vaginal probiotic lactobacilli during refrigerated and frozen storage. Anaerobe 10:1–5

    Article  PubMed  Google Scholar 

  • Kaewsrichan J, Peeyananjarassri K, Kongprasertkit J (2006) Selection and identification of anaerobic lactobacilli producing inhibitory compounds against vaginal pathogens. FEMS Immunol Med Microbiol 48:75–83

    Article  CAS  PubMed  Google Scholar 

  • Kandulski A, Selgrad M, Malfertheiner P (2008) Helicobacter pylori infection: a clinical overview. Dig Liver Dis 40:619–626

    Article  CAS  PubMed  Google Scholar 

  • Karolyi G, Neufeld Z, Scheuring I (2005) Rock-scissors-paper game in a chaotic flow: the effect of dispersion on the cyclic competition of microorganisms. J Theor Biol 236:12–20

    Article  PubMed  Google Scholar 

  • Kashket ER (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Lett 46:233–244

    Article  CAS  Google Scholar 

  • Kerr B, Riley MA, Feldman MW, Bohannan BJ (2002) Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature 418:171–174

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Austin B (2006) Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish Immunol 21:513–524

    Article  CAS  PubMed  Google Scholar 

  • Kim WS, Dunn NW (1997) Stabilization of the Lactococcus lactis nisin production transposon as a plasmid. FEMS Microbiol Lett 146:285–289

    Article  CAS  Google Scholar 

  • Kirkup BC, Riley MA (2004) Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428:412–414

    Article  CAS  PubMed  Google Scholar 

  • Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70:337–349

    Article  CAS  PubMed  Google Scholar 

  • Klaenhammer TR, Kullen MJ (1999) Selection and design of probiotics. Int J Food Microbiol 50:45–57

    Article  CAS  PubMed  Google Scholar 

  • Kuipers OP, Beerthuyzen MM, de Ruyter PG, Luesink EJ, de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270:27299–27304

    Article  CAS  PubMed  Google Scholar 

  • Laird RA, Schamp BS (2008) Does local competition increase the coexistence of species in intransitive networks? Ecol 89:237–247

    Article  Google Scholar 

  • Lategan MJ, Torpy FR, Gibson LF (2004) Control of saprolegniosis in the eel Anguilla australis Richardson, by Aeromonas media strain A199. Aquaculture 240:19–27

    Article  Google Scholar 

  • Laukova A, Guba P, Nemcova R, Vasilkova Z (2003) Reduction of Salmonella in gnotobiotic Japanese quails caused by the enterocin A-producing EK13 strain of Enterococcus faecium. Vet Res Commun 27:275–280

    Article  CAS  PubMed  Google Scholar 

  • Laukova A, Strompfova V, Skrivanova V, Volek Z, Jindrichova E, Marounek M (2006) Bacteriocin-producing strain of Enterococcus faecium EK 13 with probiotic character and its application in the digestive tract of rabbits. Biologia (Bratisl) 61:779–782

    Article  CAS  Google Scholar 

  • Lenski RE, Riley MA (2002) Chemical warfare from an ecological perspective. Proc Natl Acad Sci U S A 99:556–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linaje R, Coloma MD, Perez-Martinez G, Zuniga M (2004) Characterization of faecal enterococci from rabbits for the selection of probiotic strains. J Appl Microbiol 96:761–771

    Article  CAS  PubMed  Google Scholar 

  • Louis P, Scott KP, Duncan SH, Flint HJ (2007) Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 102:1197–1208

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane GT, Cummings JH (2002) Probiotics, infection and immunity. Curr Opin Infect Dis 15:501–506

    Article  CAS  PubMed  Google Scholar 

  • Maqueda M, Sanchez-Hidalgo M, Fernandez M, Montalban-Lopez M, Valdivia E, Martinez-Bueno M (2008) Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol Rev 32:2–22

    Article  CAS  PubMed  Google Scholar 

  • Martin NI, Sprules T, Carpenter MR, Cotter PD, Hill C, Ross RP, Vederas JC (2004) Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochemistry (Mosc) 43:3049–3056

    Article  CAS  Google Scholar 

  • Martínez-Cuesta MC, Requena T, Peláez C (2006) Cell membrane damage induced by lacticin 3147 enhances aldehyde formation in Lactococcus lactis IFPL730. Int J Food Microbiol 109:198–204

    Article  CAS  PubMed  Google Scholar 

  • Matyar F (2007) Distribution and antimicrobial multiresistance in Gram-negative bacteria isolated from Turkish sea bass (Dicentrarchus labrax L., 1781) farm. Ann Microbiol 57:35–38

    Article  CAS  Google Scholar 

  • McCormick BA, Franklin DP, Laux DC, Cohen PS (1989) Type 1 pili are not necessary for colonization of the streptomycin-treated mouse large intestine by type 1-piliated Escherichia coli F-18 and E. coli K-12. Infect Immun 57:3022–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier R, Steuerwald M (2005) Place of probiotics. Curr Opin Crit Care 11:318–325

    Article  PubMed  Google Scholar 

  • Metchnikoff E (1908) Prolongation of life: optimistic studies. Putnam, New York (translated by Mitchell PC)

    Google Scholar 

  • Meurman JH, Stamatova I (2007) Probiotics: contributions to oral health. Oral Dis 13:443–451

    Article  CAS  PubMed  Google Scholar 

  • Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510

    Article  CAS  PubMed  Google Scholar 

  • Michetti P, Dorta G, Wiesel PH, Brassart D, Verdu E, Herranz M, Felley C, Porta N, Rouvet M, Blum AL, Corthesy-Theulaz I (1999) Effect of whey-based culture supernatant of Lactobacillus acidophilus (johnsonii) La1 on Helicobacter pylori infection in humans. Digestion 60:203–209

    Article  CAS  PubMed  Google Scholar 

  • Morelli L (2002) Probiotics: clinics and/or nutrition. Digest Liver Dis 34:S8–S11

    Article  Google Scholar 

  • Morency H, Mota-Meira M, LaPointe G, Lacroix C, Lavoie MC (2001) Comparison of the activity spectra against pathogens of bacterial strains producing a mutacin or a lantibiotic. Can J Microbiol 47:322–331

    Article  CAS  PubMed  Google Scholar 

  • Mota-Meira M, Lacroix C, LaPointe G, Lavoie MC (1997) Purification and structure of mutacin B-Ny266: a new lantibiotic produced by Streptococcus mutans. FEBS Lett 410:275–279

    Article  CAS  PubMed  Google Scholar 

  • Mota-Meira M, LaPointe G, Lacroix C, Lavoie MC (2000) MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob Agents Chemother 44:24–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mota-Meira M, Morency H, Lavoie MC (2005) In vivo activity of mutacin B-Ny266. J Antimicrob Chemother 56:869–871

    Article  CAS  PubMed  Google Scholar 

  • Murinda SE, Roberts RF, Wilson RA (1996) Evaluation of colicins for inhibitory activity against diarrheagenic Escherichia coli strains, including serotype O157:H7. Appl Environ Microbiol 62:3196–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagao JI, Asaduzzaman SM, Aso Y, Okuda K, Nakayama J, Sonomoto K (2006) Lantibiotics: Insight and foresight for new paradigm. J Biosci Bioeng 102:139–149

    Article  CAS  PubMed  Google Scholar 

  • Nakamaru M, Iwasa Y (2000) Competition by allelopathy proceeds in traveling waves: colicin-immune strain aids colicin-sensitive strain. Theor Popul Biol 57:131–144

    Article  CAS  PubMed  Google Scholar 

  • Nedrud JG, Blanchard TG (2001) Helicobacter animal models. Curr Protoc Immunol May: Unit 19.8

  • Nes IF, Holo H (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55:50–61

    Article  CAS  PubMed  Google Scholar 

  • Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Schuster S (2007a) Continuous model for the rock-scissors-paper game between bacteriocin producing bacteria. J Math Biol 54:815–846

    Article  PubMed  Google Scholar 

  • Neumann G, Schuster S (2007b) Modeling the rock–scissors–paper game between bacteriocin producing bacteria by Lotka–Volterra equations. Discrete Contin Dyn Syst B 8:207–228

    Google Scholar 

  • Nizet V (2007) Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. J Allergy Clin Immunol 120:13–22

    Article  CAS  PubMed  Google Scholar 

  • Nomura M (1967) Colicins and related bacteriocins. Annu Rev Microbiol 21:257–284

    Article  CAS  PubMed  Google Scholar 

  • O’Brien RF (2005) Bacterial vaginosis: many questions—any answers? Curr Opin Pediatr 17:473–479

    Article  PubMed  Google Scholar 

  • Ocana V, Nader-Macias ME (2001) Adhesion of Lactobacillus vaginal strains with probiotic properties to vaginal epithelial cells. Biocell 25:265–273

    PubMed  CAS  Google Scholar 

  • Ocana VS, Holgado A, Nader-Macias ME (1999) Characterization of a bacteriocin-like substance produced by a vaginal Lactobacillus salivarius strain. Appl Environ Microbiol 65:5631–5635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oppegård C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen-Meyer J (2007) The two-peptide class II bacteriocins: structure, production, and mode of action. J Mol Microbiol Biotechnol 13:210–219

    Article  PubMed  CAS  Google Scholar 

  • Pag U, Sahl HG (2002) Multiple activities in lantibiotics—models for the design of novel antibiotics? Curr Pharm Des 8:815–833

    Article  CAS  PubMed  Google Scholar 

  • Parrot M, Caufield PW, Lavoie MC (1990) Preliminary characterization of four bacteriocins from Streptococcus mutans. Can J Microbiol 36:123–130

    Article  CAS  PubMed  Google Scholar 

  • Pascual M, Hugas M, Badiola JI, Monfort JM, Garriga M (1999) Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl Environ Microbiol 65:4981–4986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patzer SI, Baquero MR, Bravo D, Moreno F, Hantke K (2003) The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149:2557–2570

    Article  CAS  PubMed  Google Scholar 

  • Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C (2005) Review article: bifidobacteria as probiotic agents—physiological effects and clinical benefits. Aliment Pharmacol Ther 22:495–512

    Article  CAS  PubMed  Google Scholar 

  • Pidcock K, Heard GM, Henriksson A (2002) Application of nontraditional meat starter cultures in production of Hungarian salami. Int J Food Microbiol 76:75–81

    Article  CAS  PubMed  Google Scholar 

  • Piva A, Casadei G (2006) Use of bacteriocin for the amelioration of digestive functionality. USA Patent 20060233777

  • Pons AM, Lanneluc I, Cottenceau G, Sable S (2002) New developments in non-post translationally modified microcins. Biochimie 84:531–537

    Article  CAS  PubMed  Google Scholar 

  • Portrait V, Gendron-Gaillard S, Cottenceau G, Pons AM (1999) Inhibition of pathogenic Salmonella enteritidis growth mediated by Escherichia coli microcin J25 producing strains. Can J Microbiol 45:988–994

    Article  CAS  PubMed  Google Scholar 

  • Prater DA (2005) Judicious use of antimicrobials for aquatic veterinarians. FDA, Veterinarian Newsletter. 20(5).

  • Pugsley AP, Oudega B (1987) Methods for studying colicins and their plasmids. In: Hardy KG (ed) Plasmids, a practical approach. IRL, Oxford, pp 105–161

    Google Scholar 

  • Quivey RG Jr., Kuhnert WL, Hahn K (2000) Adaptation of oral streptococci to low pH. Adv Microb Physiol 42:239–274

    Article  CAS  PubMed  Google Scholar 

  • Reilly A, Kaferstein F (1999) Food safety and products from aquaculture. J Appl Microbiol 85:249S–257S

    Article  Google Scholar 

  • Revolledo L, Ferreira AJP, Mead GC (2006) Prospects in Salmonella control: competitive exclusion, probiotics, and enhancement of avian intestinal immunity. J Appl Poult Res 15:341–351

    Article  Google Scholar 

  • Riley MA, Gordon DM (1992) A survey of Col plasmids in natural isolates of Escherichia coli and an investigation into the stability of Col-plasmid lineages. J Gen Microbiol 138:1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Gordon DM (1999) The ecological role of bacteriocins in bacterial competition. Trends Microbiol 7:129–133

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Wertz JE (2002a) Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Wertz JE (2002b) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Goldstone CM, Wertz JE, Gordon DM (2003) A phylogenetic approach to assessing the targets of microbial warfare. J Evol Biol 16:690–697

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Calleja JM, Santos JA, Otero A, Garcia-Lopez ML (2004) Microbiological quality of rabbit meat. J Food Prot 67:966–971

    Article  PubMed  Google Scholar 

  • Roos K, Holm S (2002) The use of probiotics in head and neck infections. Curr Infect Dis Rep 4:211–216

    Article  PubMed  Google Scholar 

  • Ruiz-Ponte C, Samain JF, Sanchez JL, Nicolas JL (1999) The benefit of a Roseobacter species on the survival of scallop larvae. Mar Biotechnol (NY) 1:52–59

    Article  CAS  Google Scholar 

  • Ryan MP, Meaney WJ, Ross RP, Hill C (1998) Evaluation of lacticin 3147 and a teat seal containing this bacteriocin for inhibition of mastitis pathogens. Appl Environ Microbiol 64:2287–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saavedra JM (2001) Clinical applications of probiotic agents. Am J Clin Nutr 73:1147S–1151S

    Article  CAS  PubMed  Google Scholar 

  • Sahl HG, Bierbaum G (1998) Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from Gram-positive bacteria. Annu Rev Microbiol 52:41–79

    Article  CAS  PubMed  Google Scholar 

  • Sahl HG, Jack RW, Bierbaum G (1995) Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 230:827–853

    Article  CAS  PubMed  Google Scholar 

  • Sartor RB (2003) Targeting enteric bacteria in treatment of inflammatory bowel diseases: why, how, and when. Curr Opin Gastroenterol 19:358–365

    Article  PubMed  Google Scholar 

  • Scarpellini E, Cazzato A, Lauritano C, Gabrielli M, Lupascu A, Gerardino L, Abenavoli L, Petruzzellis C, Gasbarrini G, Gasbarrini A (2008) Probiotics: which and when? Dig Dis 26:175–182

    Article  CAS  PubMed  Google Scholar 

  • Schamberger GP, Diez-Gonzalez F (2004) Characterization of colicinogenic Escherichia coli strains inhibitory to enterohemorrhagic Escherichia coli. J Food Prot 67:486–492

    Article  CAS  PubMed  Google Scholar 

  • Schamberger GP, Phillips RL, Jacobs JL, Diez-Gonzalez F (2004) Reduction of Escherichia coli O157:H7 populations in cattle by addition of colicin E7-producing E. coli to feed. Appl Environ Microbiol 70:6053–6060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senok AC, Ismaeel AY, Botta GA (2005) Probiotics: facts and myths. Clin Microbiol Infect 11:958–966

    Article  CAS  PubMed  Google Scholar 

  • Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS (2007) Low-molecular-weight post-translationally modified microcins. Mol Microbiol 65:1380–1394

    Article  CAS  PubMed  Google Scholar 

  • Shand RF, Leyva KJ (2008) Archaeal antimicrobials: an undiscovered country. In: Blum P (ed) Archaea: new models for prokaryotic biology. Caister Academic, Norfolk, pp 233–242

    Google Scholar 

  • Sharma O, Yamashita E, Zhalnina MV, Zakharov SD, Datsenko KA, Wanner BL, Cramer WA (2007) Structure of the complex of the colicin E2 R-domain and its BtuB receptor. The outer membrane colicin translocon. J Biol Chem 282:23163–23170

    Article  CAS  PubMed  Google Scholar 

  • Smajs D, Strouhal M, Matejkova P, Cejkova D, Cursino L, Chartone-Souza E, Smarda J, Nascimento AM (2008) Complete sequence of low-copy-number plasmid MccC7-H22 of probiotic Escherichia coli H22 and the prevalence of mcc genes among human E. coli. Plasmid 59:1–10

    Article  CAS  PubMed  Google Scholar 

  • Smarda J, Smajs D (1998) Colicins-exocellular lethal proteins of Escherichia coli. Folia Microbiol 43:563–582

    Article  CAS  Google Scholar 

  • Smith P (2007) Antimicrobial use in shrimp farming in Ecuador and emerging multi-resistance during the cholera epidemic of 1991: a re-examination of the data. Aquaculture 271:1–7

    Article  CAS  Google Scholar 

  • Smith JL, Orugunty R, Hillman JD (2007) Lantibiotic production by Streptococcus mutans: their uses in replacement therapy for the prevention of dental caries and as antibiotics for the treatment of various infectious diseases. In: Riley MA, Gillor O (eds) Research and applications in bacteriocins. Horizon Bioscience, Norfolk, pp 95–115

    Google Scholar 

  • Snelling AM (2005) Effects of probiotics on the gastrointestinal tract. Curr Opin Infect Dis 18:420–426

    Article  PubMed  Google Scholar 

  • Speelmans G, Vriesema AJ, Oolhorst SDE (2006) Pediocin-producing pediococci. USA Patent 20060165661

  • Su P, Henriksson A, Mitchell H (2007a) Prebiotics enhance survival and prolong the retention period of specific probiotic inocula in an in vivo murine model. J Appl Microbiol 103:2392–2400

    Article  CAS  PubMed  Google Scholar 

  • Su P, Henriksson A, Mitchell H (2007b) Survival and retention of the probiotic Lactobacillus casei LAFTI (R) L26 in the gastrointestinal tract of the mouse. Lett Appl Microbiol 44:120–125

    Article  CAS  PubMed  Google Scholar 

  • Tagg JR, Dierksen KP (2003) Bacterial replacement therapy: adapting ‘germ warfare’ to infection prevention. Trends Biotechnol 21:217–223

    Article  CAS  PubMed  Google Scholar 

  • Tagg JR, Chilcott CN, Burton JP (2006) Treatment of malodour. USA Patent 20060171901.

  • Taoka Y, Maeda H, Jo J-Y, Jeon M-J, Bai SC, Lee W-J, Yuge K, Koshio S (2006) Growth, stress tolerance and non-specific immune response of Japanese flounder Paralichthys olivaceus to probiotics in a closed recirculating system. Fish Sci 72:310–321

    Article  CAS  Google Scholar 

  • Thompson FL, Abreu PC, Cavalli R (1999) The use of microorganisms as food source for Penaeus paulensis larvae. Aquaculture 174:139–153

    Article  Google Scholar 

  • Twomey D, Ross RP, Ryan M, Meaney B, Hill C (2002) Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Van Leeuwenhoek 82:165–185

    Article  CAS  PubMed  Google Scholar 

  • van Reenen CA, Dicks LM, Chikindas ML (1998) Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol 84:1131–1137

    Article  PubMed  Google Scholar 

  • Vasquez A, Jakobsson T, Ahrne S, Forsum U, Molin G (2002) Vaginal lactobacillus flora of healthy Swedish women. J Clin Microbiol 40:2746–2749

    Article  PubMed  PubMed Central  Google Scholar 

  • Vermeiren L, Devlieghere F, Vandekinderen I, Debevere J (2006) The interaction of the non-bacteriocinogenic Lactobacillus sakei 10A and lactocin S producing Lactobacillus sakei 148 towards Listeria monocytogenes on a model cooked ham. Food Microbiol 23:511–518

    Article  CAS  PubMed  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Buenau R, Jaekel L, Schubotz E, Schwarz S, Stroff T, Krueger M (2005) Escherichia coli strain Nissle 1917: significant reduction of neonatal calf diarrhea. J Dairy Sci 88:317–323

    Article  Google Scholar 

  • Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walls T, Power D, Tagg J (2003) Bacteriocin-like inhibitory substance (BLIS) production by the normal flora of the nasopharynx: potential to protect against otitis media? J Med Microbiol 52:829–833

    Article  CAS  PubMed  Google Scholar 

  • Walsh MC, Gardiner GE, Hart OM, Lawlor PG, Daly M, Lynch B, Richert BT, Radcliffe S, Giblin L, Hill C, Fitzgerald GF, Stanton C, Ross P (2008) Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. FEMS Microbiol Ecol 64:317–327

    Article  CAS  PubMed  Google Scholar 

  • Wiedemann I, Bottiger T, Bonelli RR, Wiese A, Hagge SO, Gutsmann T, Seydel U, Deegan L, Hill C, Ross P, Sahl HG (2006) The mode of action of the lantibiotic lacticin 3147—a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol Microbiol 61:285–296

    Article  CAS  PubMed  Google Scholar 

  • Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779

    Article  CAS  PubMed  Google Scholar 

  • Wooley RE, Shotts EB (2000) Biological control of food pathogens in livestock. USA Patent 5043176

  • Wooley RE, Gibbs PS, Shotts EB Jr. (1999) Inhibition of Salmonella typhimurium in the chicken intestinal tract by a transformed avirulent avian Escherichia coli. Avian Dis 43:245–250

    Article  CAS  PubMed  Google Scholar 

  • Wynne AG, Gibson GR, Brostoff J (2006) Composition comprising a Lactobacillus pentosus strain and uses thereof USA Patent 7125708

  • Zakharov SD, Cramer WA (2004) On the mechanism and pathway of colicin import across the E. coli outer membrane. Front Biosci 9:1311–1317

    Article  CAS  PubMed  Google Scholar 

  • Zakharov SD, Eroukova VY, Rokitskaya TI, Zhalnina MV, Sharma O, Loll PJ, Zgurskaya HI, Antonenko YN, Cramer WA (2004) Colicin occlusion of OmpF and TolC channels: outer membrane translocons for colicin import. Biophys J 87:3901–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarate G, Nader-Macias ME (2006) Viability and biological properties of probiotic vaginal lactobacilli after lyophilization and refrigerated storage into gelatin capsules. Process Biochem 41:1779–1785

    Article  CAS  Google Scholar 

  • Zheng G, Slavik MF (1999) Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett Appl Microbiol 28:363–367

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01GM068657-01A2 and R01A1064588-01A2 to M. A. Riley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Riley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillor, O., Etzion, A. & Riley, M.A. The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol 81, 591–606 (2008). https://doi.org/10.1007/s00253-008-1726-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1726-5

Keywords

Navigation