Skip to main content
Log in

Production of hydroxy-fatty acid derivatives from waste oil by Escherichia coli cells producing fungal cytochrome P450foxy

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cytochrome P450foxy (P450foxy) is a fatty acid (FA) monooxygenase that is characterized by self-sufficient catalysis and high turnover numbers due to the fused structure of cytochrome P450 and its reductase. Here we found that resting recombinant Escherichia coli cells producing P450foxy converted saturated FA with a chain length of 7–16 carbon atoms to their ω − 1 to ω − 3 hydroxy derivatives. Most products were recovered from the culture supernatant. Decanoic acid was most efficiently converted to ω − 1 to ω − 3 hydroxy decanoic acids in the order of ω − 1 > ω − 2 > ω − 3, with a total product yield of 47%. We also found that P450foxy was more active against physiological fatty acyl esters such as monopalmitoyl glycerol, monopalmitoyl phospholipid, and palmitoyl CoA than free palmitic acid. The bacteria producing P450foxy were applicable as biocatalysts in the production of ω − 1 hydroxy palmitic acid from lard, vegetable, and soy sauce oil wastes from the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Boddupalli SS, Pramanik BC, Slaughter CA, Estabrook RW, Peterson JA (1992) Fatty acid monooxygenation by P450BM-3: product identification and proposed mechanisms for the sequential hydroxylation reactions. Arch Biochem Biophys 292:20–28

    Article  CAS  PubMed  Google Scholar 

  • Carmichael AB, Wong LL (2001) Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. Eur J Biochem 268:3117–3125

    Article  CAS  PubMed  Google Scholar 

  • Chowdhary PK, Keshavan N, Nguyen HQ, Peterson JA, González JE, Haines DC (2007) Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry 46:14429–14437

    Article  CAS  PubMed  Google Scholar 

  • Estabrook RW (2003) A passion for P450s (remembrances of the early history of research on cytochrome P450). Drug Metab Dispos 31:1461–1473

    Article  CAS  PubMed  Google Scholar 

  • Fulco AJ (1991) P450BM-3 and other inducible bacterial P450 cytochromes: biochemistry and regulation. Annu Rev Pharmacol Toxicol 31:177–203

    Article  CAS  PubMed  Google Scholar 

  • Graham-Lorence S, Peterson JA (1996) P450s: structural similarities and functional differences. FASEB J 10:206–214

    Article  CAS  PubMed  Google Scholar 

  • Haines DC, Tomchick DR, Machius M, Peterson JA (2001) Pivotal role of water in the mechanism of P450BM-3. Biochemistry 40:13456–13465

    Article  CAS  PubMed  Google Scholar 

  • Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344

    Article  CAS  PubMed  Google Scholar 

  • Haurand M, Ullrich V (1985) Isolation and characterization of thromboxane synthase from human platelets as a cytochrome P-450 enzyme. J Biol Chem 260:15059–15067

    CAS  PubMed  Google Scholar 

  • Hegde A, Haines DC, Bondlela M, Chen B, Schaffer N, Tomchick DR, Machius M, Nguyen H, Chowdhary PK, Stewart L, Lopez C, Peterson JA (2007) Interactions of substrates at the surface of P450s can greatly enhance substrate potency. Biochemistry 46:14010–14017

    Article  CAS  PubMed  Google Scholar 

  • Hilditch TP (1949) The industrial chemistry of the fats and waxes. Bailliere, Tindall, and Cox, London

    Google Scholar 

  • Kitazume T, Takaya N, Nakayama N, Shoun H (2000) Fusarium oxysporum fatty-acid subterminal hydroxylase (CYP505) is a membrane-bound eukaryotic counterpart of Bacillus megaterium cytochrome P450BM3. J Biol Chem 275:39734–39740

    Article  CAS  PubMed  Google Scholar 

  • Kitazume T, Tanaka A, Takaya N, Nakamura A, Matsuyama S, Suzuki T, Shoun H (2002) Kinetic analysis of hydroxylation of saturated fatty acids by recombinant P450foxy produced by an Escherichia coli expression system. Eur J Biochem 269:2075–2082

    Article  CAS  PubMed  Google Scholar 

  • Kitazume T, Haines DC, Estabrook RW, Chen B, Peterson JA (2007) Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3. Biochemistry 46:11892–11901

    Article  CAS  PubMed  Google Scholar 

  • Kizawa H, Tomura D, Oda M, Fukamizu A, Hoshino T, Gotoh O, Yasui T, Shoun H (1991) Nucleotide sequence of the unique nitrate/nitrite-inducible cytochrome P-450 cDNA from Fusarium oxysporum. J Biol Chem 266:10632–10637

    CAS  PubMed  Google Scholar 

  • Munro AW, Girvan HM, McLean KJ (2007) Variations on a (t)heme-novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 24:585–609

    Article  CAS  PubMed  Google Scholar 

  • Nakahara K, Tanimoto T, Hatano K, Usuda K, Shoun H (1993) Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J Biol Chem 268:8350–8355

    CAS  PubMed  Google Scholar 

  • Nakayama N, Takemae A, Shoun H (1996) Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J Biochem 119:435–440

    Article  CAS  PubMed  Google Scholar 

  • Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169

    CAS  PubMed  Google Scholar 

  • Neeli R, Girvan HM, Lawrence A, Warren MJ, Leys D, Scrutton NS, Munro AW (2005) The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase. FEBS Lett 579:5582–5588

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369:1–10

    Article  CAS  PubMed  Google Scholar 

  • Omura T, Sato R (1964a) The carbon monoxide-binding pigment of rat liver microsomes II. Solubilization, purification, and properties. J Biol Chem 239:2379–2385

    CAS  PubMed  Google Scholar 

  • Omura T, Sato R (1964b) The carbon monoxide-binding pigment of rat liver microsomes I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    CAS  PubMed  Google Scholar 

  • Omura T (1999) Forty years of cytochrome P450. Biochem Biophys Res Commun 266:690–698

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Wubbolts MG, Oesterhelt G, Sanglard D, Witholt B (1999) Controlled regioselectivity of fatty acid oxidation by whole cells producing cytochrome P450BM-3 monooxygenase under varied dissolved oxygen concentrations. Biotechnol Bioeng 64:333–341

    Article  CAS  PubMed  Google Scholar 

  • Shimizu H, Park SY, Shiro Y, Adachi S (2002) X-ray structure of nitric oxide reductase (cytochrome P450nor) at atomic resolution. Acta Crystallogr D Biol Crystallogr 58:81–89

    Article  PubMed  Google Scholar 

  • Song WC, Brash AR (1991) Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450. Science 253:781–784

    Article  CAS  PubMed  Google Scholar 

  • Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2888

    Article  CAS  PubMed  Google Scholar 

  • Tomura D, Obika K, Fukamizu A, Shoun H (1994) Nitric oxide reductase cytochrome P-450 gene, CYP 55, of the fungus Fusarium oxysporum containing a potential binding-site for FNR, the transcription factor involved in the regulation of anaerobic growth of Escherichia coli. J Biochem 116:88–94

    Article  CAS  PubMed  Google Scholar 

  • Urlacher VB, Eiben S (2006) Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24:324–330

    Article  CAS  PubMed  Google Scholar 

  • van Beilen JB, Duetz WA, Schmid A, Witholt B (2003) Practical issues in the application of oxygenases. Trends Biotechnol 21:170–177

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Norma Foster for critical reading of the manuscript. This study was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Culture and Sports of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Takaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitazume, T., Yamazaki, Y., Matsuyama, S. et al. Production of hydroxy-fatty acid derivatives from waste oil by Escherichia coli cells producing fungal cytochrome P450foxy. Appl Microbiol Biotechnol 79, 981–988 (2008). https://doi.org/10.1007/s00253-008-1513-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1513-3

Keywords