Applied Microbiology and Biotechnology

, Volume 78, Issue 6, pp 917–926 | Cite as

Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol

  • Zhi-Long XiuEmail author
  • An-Ping ZengEmail author


1,3-Propanediol and 2,3-butanediol are two promising chemicals which have a wide range of applications and can be biologically produced. The separation of these diols from fermentation broth makes more than 50% of the total costs in their microbial production. This review summarizes the present state of methods studied for the recovery and purification of biologically produced diols, with particular emphasis on 1,3-propoanediol. Previous studies on the separation of 1,3-propanediol primarily include evaporation, distillation, membrane filtration, pervaporation, ion exchange chromatography, liquid–liquid extraction, and reactive extraction. Main methods for the recovery of 2,3-butanediol include steam stripping, pervaporation, and solvent extraction. No single method has proved to be simple and efficient, and improvements are especially needed with regard to yield, purity, and energy consumption. Perspectives for an improved downstream processing of biologically produced diols, especially 1,3-propanediol are discussed based on our own experience and recent work. It is argued that separation technologies such as aqueous two-phase extraction with short chain alcohols, pervaporation, reverse osmosis, and in situ extractive or pervaporative fermentations deserve more attention in the future.


1,3-Propanediol 2,3-Butanediol Separation Recovery Fermentation 



This work was partially supported by the Major State Basic Research Development Program of China (973 Program; No. 2007CB714306) and the Teaching and Research Award Program for Outstanding Young Teachers (to Z.-L. Xiu) in High Education Institutions of Ministry of Education of the People’s Republic of China.


  1. Adkesson DM, Alsop AW, Ames TT, Chu LA, Disney JM, Dravis BC, Fitzgibbon P, Gaddy JM, Gallagher FG, Lehnhardt WF, Lievense JC, Luyben ML, Seapan M, Trotter RE, Wenndt GM, Yu EK (2005) Purification of biologically-produced 1,3-propanediol, United States Patent 20050069997Google Scholar
  2. Albertsson PA (1986) Partition of cell particles and macromolecules, 3rd edn. Wiley, New YorkGoogle Scholar
  3. Ames TT (2002) Process for the isolation of 1,3-propanediol from fermentation broth. US Patent 6. 361. 983 B1Google Scholar
  4. Baniel AM, Jansen RP, Vitner A, Baiada A (2004) Process for producing 1, 3-propanediol. United States Patent 20040222153Google Scholar
  5. Biebl H, Zeng A-P, Menzel K, Deckwer W-D (1998) Glycerol fermentation to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl Microbiol Biotechnol 50:24–29CrossRefGoogle Scholar
  6. Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297CrossRefGoogle Scholar
  7. Broekhuis RR, Lynn S, King CJ (1994) Recovery of propylene glycol from dilute aqueous solutions via reversible reaction with aldehydes. Ind Eng Chem Res 33:3230–3237CrossRefGoogle Scholar
  8. Broekhuis RR, Lynn S, King CJ (1996) Recovery of propylene glycol from dilute aqueous solutions by complexation with organoboronates in ion-pair extractants. Ind Eng Chem Res 35:1206–1214CrossRefGoogle Scholar
  9. Byun T-G, Zeng A-P, Deckwer W-D (1994) Reactor comparison and scale-up for the microaerobic production of 2,3-butanediol by Enterobacter aerogenes at constant oxygen transfer rate. Bioprocess Eng 11:167–175CrossRefGoogle Scholar
  10. Chen X, Zhang D-J, Qi W-T, Gao S-J, Xiu Z-L, Xu P (2003) Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl Microbiol Biotechnol 63:143–146CrossRefGoogle Scholar
  11. Cheng K-K, Zhang J-A, Liu D-H, Sun Y, Liu H-J, Yang M-D, Xu J-M (2007) Pilot-scale production of 1,3-propanediol using Klebsiella pneumoniae. Process Biochem 42:740–744CrossRefGoogle Scholar
  12. Cho M-H, Joen SI, Pyo S-H, Mun S, Kim J-H (2006) A novel separation and purification process for 1,3-propanediol. Process Biochem 41(3):739–744CrossRefGoogle Scholar
  13. Corbin DR, Norton T (2003) Process to separate 1,3-propanediol or glycerol, or a mixture thereof from a biological mixture. United States Patent 6 603 048Google Scholar
  14. Deckwer WD (1995) Microbial conversion of glycerol production to 1,3-propanediol. FEMS Microbiol Rev 16:143–149CrossRefGoogle Scholar
  15. Eiteman MA, Gainer JL (1989) In situ extraction versus the use of an external column in fermentation. Appl Microbiol Biotechnol 30:614–618CrossRefGoogle Scholar
  16. Gao S, Zhang D, Sun Y, Xiu Z (2007) Separation of 1,3-propanediol from glycerol-based fermentations of Klebsiella pneumoniae by alcohol dilution crystallization. Front Chem Eng China 1(2):202–207CrossRefGoogle Scholar
  17. Garg SK, Jain A (1995) Fermentative production of 2,3-butanediol: a review. Bioresour Technol 51:103–109CrossRefGoogle Scholar
  18. Ghosh S, Swaminathan T (2003) Optimization of process variables for the extractive fermentation of 2,3-butanediol by Klebsiella oxytoca in aqueous two-phase system using response surface methodology. Chem Biochem Eng Q 17(4):319–325Google Scholar
  19. Gong Y, Tong Y, Wang XL, Liu DH (2004) The possibility of the desalination of actual 1,3-propanediol fermentation broth by electrodialysis. Desalination 161:169–178CrossRefGoogle Scholar
  20. Greve A, Kula MR (1990) Cost structure and estimation for the recycling of salt in a protein extraction process system. Bioprocess Eng 6:173–177CrossRefGoogle Scholar
  21. Grothe E (2000) Konzeption und Wirtschaftlichkeit der industriellen Glycerinvergärung zu 1,3-Propandiol. Dissertation, VDI Verlag GmbH, Düsseldorf 2000Google Scholar
  22. Günzel B (1991) Mikrobielle Herstellung von 1,3-Propandiol durch Clostridium butyricum und adsorptive Aufarbeitung von diolen. Dissertation, Technischen Universität BraunschweigGoogle Scholar
  23. Günzel B, Berke CH, Ernst S (1990) Adsorption von Diolen aus Fermentationsmedien an hydrophobe Zeolithe. Chem Ing Tech 62(9):7482750CrossRefGoogle Scholar
  24. Hao J, Liu DH (2005) Desalination of fermented broth containing 1,3-propanediol by electrodialysis. Chinese J Proc Eng 5:36–39Google Scholar
  25. Hao J, Liu HJ, Liu DH (2005) Novel route of reactive extraction to recover 1,3-propanediol from a dilute aqueous solution. Ind Eng Chem Res 44:4380–4385CrossRefGoogle Scholar
  26. Hao J, Xu F, Liu H, Liu D (2006) Downstream processing of 1,3-propanediol fermentation broth. J Chem Technol Biotechnol 81:102–108CrossRefGoogle Scholar
  27. Hartlep M, Hussmann W, Prayitno N, Meynial-Salles I, Zeng AP (2002) Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Appl Microbiol Biotechnol 60:60–66CrossRefGoogle Scholar
  28. Hermann BG, Patel M (2007) Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology: a techno-economic analysis. Appl Biochem Biotechnol 136:361–388CrossRefGoogle Scholar
  29. Hilaly AK, Binder TP (2002) Method of recovering 1,3-propanediol from fermentation broth. United States Patent 6 479 716Google Scholar
  30. Hu B-L, Qiu X-Q, Yang D-J (2003) Separation of butanol–acetone–water system using repulsive extraction. Journal of South China University of Technology (Natural Science Edition) 31(12):58–62Google Scholar
  31. Kelsey DR (1996) Purification of 1,3-propanediol. US Patent 5. 527. 973Google Scholar
  32. Kula MR, Krone KH, Hustedt H (1982) Purification of enzymes by liquid–liquid extraction. In: Fiechter A (ed) Advances in biochemical engineering, vol 24. Springer, Berlin, pp 73–118Google Scholar
  33. Kurian JV (2005) A new polymer platform for the future—Sorona from corn derived 1,3-propanediol. J Polym Environ 13(2):159–167CrossRefGoogle Scholar
  34. Laffend LA, Nagarajan V, Nakamura CE (2007) Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism, United States Patent Application, 20070048849A1Google Scholar
  35. Li S, Tuan VA, Falconer JL, Noble RD (2001a) Separation of 1,3-propanediol from glycerol and glucose using a ZSM-5 zeolite membrane. J Membr Sci 191:53–59CrossRefGoogle Scholar
  36. Li S, Tuan VA, Falconer JL, Noble RD (2001b) Separation of 1,3-propanediol from aqueous solutions using pervaporation through an X-type zeolite membrane. Ind Eng Chem Res 40(8):1952–1959CrossRefGoogle Scholar
  37. Li S, Tuan VA, Falconer JL, Noble RD (2001c) Effects of zeolite membrane structure on the separation of 1,3-propanediol from glycerol and glucose by pervaporation. Chem Mater 13(5):1865–1873CrossRefGoogle Scholar
  38. Li S, Tuan VA, Falconer JL, Noble RD (2002) X-type zeolite membranes: preparation, characterization, and pervaporation performance. Microporous Mesoporous Mater 53(1–3):59–70Google Scholar
  39. Liu H-J, Zhang D-J, Xu Y-H, Mu Y, Sun Y-Q, Xiu Z-L (2007) Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale. Biotechnol Lett 29(8):1281–1285CrossRefGoogle Scholar
  40. Louwrier A (1998) Model phase separations of proteins using aqueous/ethanol components. Biotechnol Tech 12(5):363–365CrossRefGoogle Scholar
  41. Malinowski JJ (1999) Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol. Biotechnol Tech 13:127–130CrossRefGoogle Scholar
  42. Malinowski JJ (2000) Reactive extraction for downstream separation of 1,3-propanediol. Biotechnol Prog 16:76–79CrossRefGoogle Scholar
  43. Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol 20:82–86CrossRefGoogle Scholar
  44. Mu Y, Zhang D, Teng H, Wang W, Xiu Z (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparation. Biotechnol Lett 28:1755–1759CrossRefGoogle Scholar
  45. Nakamura CE, Whitedy GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459CrossRefGoogle Scholar
  46. Othmer DF, Bergen WS, Shlechter N, Bruins PF (1945) Liquid–liquid extraction data: systems used in butadiene manufacture from butylenes glycol. Ind Eng Chem 37(9):890–894CrossRefGoogle Scholar
  47. Qureshi N, Meagher MM, Hutjins RW (1994) Recovery of 2,3-butanediol by vacuum membrane distillation. Sep Sci Technol 29(13):1733–1748CrossRefGoogle Scholar
  48. Roturier JM, Fouache C, Berghmans E (2002) Process for the purification of 1,3-propanediol from a fermentation medium. United States Patent 6 428 992Google Scholar
  49. Saha BC (2003) Hemocellulose bioconversion. J Ind Microbiol Biotech 30:279–291CrossRefGoogle Scholar
  50. Sanz MT, Blanco B, Beltran S, Cabezas JI (2001) Vapor liquid equilibria of binary and ternary systems with water, 1,3-propanediol, and glycerol. J Chem Eng Data 46:635–639CrossRefGoogle Scholar
  51. Schlieker H, Günzel B, Deckwer WD (1992) Einsatz der Adsorption zur Produtsabtrennung bei der Glycerinvergarung zu 1, 3-Propanediol. Chem Ing Tech 64(8):7272728CrossRefGoogle Scholar
  52. Schoellner R, EInicke WD, Unverricht S (1994) Investigations of adsorptive separation of glycerol/propane-1,3-diol in aqueous solution on zeolites by liquid phase adsorption. J Prakt Chem 336(5):404–407CrossRefGoogle Scholar
  53. Senkus M (1946) Recovery of 2,3-butanediol produced by fermentation. Ind Eng Chem 38:913–916CrossRefGoogle Scholar
  54. Sridhar S (1989) Zur Abtrennung von Butandiol-2,3 aus Fermenter-Brühen mit Hife der Umkehrosmose. Chem Ing Tech 61(3):252–253CrossRefGoogle Scholar
  55. Syu M-J (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18CrossRefGoogle Scholar
  56. Tan T, Huo Q, Ling Q (2002) Purification of glycyrrhizin from Glycyrrhiza uralensis Fisch with ethanol/phosphate aqueous two phase system. Biotechnol Lett 24:1417–1420CrossRefGoogle Scholar
  57. Tsao GT (1978) Conversion of biomass from agriculture into useful products. Final Report, USDDE Contact No. EG-77-S-02-4298Google Scholar
  58. Wheat JA, Leslie JD, Tomkins RV, Mitton HE, Scott DS, Ledingham GA (1948) Production and properties of 2,3-butanediol. XXVIII. Pilot plant recovery of levo-2,3-butanediol from whole wheat mashes fermented by Aerobacillus polymyxa. Can J Res 26F:469–496Google Scholar
  59. Wilkins AE, Lowe DJ (2004) Product removal process for use in a biofermentation system, United States Patent 6,812,000Google Scholar
  60. Xiang BT, Chen SF, Liu DH (2001) Extraction of 1,3-propanediol from in dilute fermentation broth. Journal of Tsinghua University (Science and Technology) 41(12):53–55Google Scholar
  61. Xiu ZL, Chen X, Sun YQ, Zhang DJ (2007a) Stoichiometric analysis and experimental investigation of glycerol–glucose cofermentation in Klebsiella pneumoniae under microaerobic conditions. Biochem Eng J 33:42–52CrossRefGoogle Scholar
  62. Xiu ZL, Zhang D, Li X (2007b) Recovery of 1,3-propanediol from fermentation broths by using ammonium sulfate salting out, Chinese Patent, 2006101346958Google Scholar
  63. Xiu ZL, Li Z, Jianng B, Sun Y, Zhang D (2007c) Aqueous two-phase extraction of 1,3-propanediol from fermentation broth, Chinese Patent, 200710010201.XGoogle Scholar
  64. Xu W-Y (2001) Separation of ethanol–acetone–butanol–water system using potassium carbonate. Chinese J Proc Eng 1(3):318–320Google Scholar
  65. Yang G, Tian J, Li J (2007) Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73:1017–1024CrossRefGoogle Scholar
  66. Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219CrossRefGoogle Scholar
  67. Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng 74:239–59Google Scholar
  68. Zeng A-P, Byun T-G, Posten C, Deckwer W-D (1994) Use of the respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions. Biotechnol Bioeng 44:1107–1114CrossRefGoogle Scholar
  69. Zhi W, Deng Q (2006) Purification of salvianolic acid B from the crude extract of Salvia miltiorrhiza with hydrophilic organic/salt-containing aqueous two-phase system by counter-current chromatography. J Chromatogr A 1116:149–152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Bioscience and Biotechnology, School of Environmental and Biological Science and TechnologyDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.Institute of Bioprocess and Biosystem EngineeringHamburg University of TechnologyHamburgGermany

Personalised recommendations