Skip to main content
Log in

Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

1,3-Propanediol and 2,3-butanediol are two promising chemicals which have a wide range of applications and can be biologically produced. The separation of these diols from fermentation broth makes more than 50% of the total costs in their microbial production. This review summarizes the present state of methods studied for the recovery and purification of biologically produced diols, with particular emphasis on 1,3-propoanediol. Previous studies on the separation of 1,3-propanediol primarily include evaporation, distillation, membrane filtration, pervaporation, ion exchange chromatography, liquid–liquid extraction, and reactive extraction. Main methods for the recovery of 2,3-butanediol include steam stripping, pervaporation, and solvent extraction. No single method has proved to be simple and efficient, and improvements are especially needed with regard to yield, purity, and energy consumption. Perspectives for an improved downstream processing of biologically produced diols, especially 1,3-propanediol are discussed based on our own experience and recent work. It is argued that separation technologies such as aqueous two-phase extraction with short chain alcohols, pervaporation, reverse osmosis, and in situ extractive or pervaporative fermentations deserve more attention in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adkesson DM, Alsop AW, Ames TT, Chu LA, Disney JM, Dravis BC, Fitzgibbon P, Gaddy JM, Gallagher FG, Lehnhardt WF, Lievense JC, Luyben ML, Seapan M, Trotter RE, Wenndt GM, Yu EK (2005) Purification of biologically-produced 1,3-propanediol, United States Patent 20050069997

  • Albertsson PA (1986) Partition of cell particles and macromolecules, 3rd edn. Wiley, New York

    Google Scholar 

  • Ames TT (2002) Process for the isolation of 1,3-propanediol from fermentation broth. US Patent 6. 361. 983 B1

    Google Scholar 

  • Baniel AM, Jansen RP, Vitner A, Baiada A (2004) Process for producing 1, 3-propanediol. United States Patent 20040222153

  • Biebl H, Zeng A-P, Menzel K, Deckwer W-D (1998) Glycerol fermentation to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl Microbiol Biotechnol 50:24–29

    CAS  PubMed  Google Scholar 

  • Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297

    CAS  PubMed  Google Scholar 

  • Broekhuis RR, Lynn S, King CJ (1994) Recovery of propylene glycol from dilute aqueous solutions via reversible reaction with aldehydes. Ind Eng Chem Res 33:3230–3237

    CAS  Google Scholar 

  • Broekhuis RR, Lynn S, King CJ (1996) Recovery of propylene glycol from dilute aqueous solutions by complexation with organoboronates in ion-pair extractants. Ind Eng Chem Res 35:1206–1214

    CAS  Google Scholar 

  • Byun T-G, Zeng A-P, Deckwer W-D (1994) Reactor comparison and scale-up for the microaerobic production of 2,3-butanediol by Enterobacter aerogenes at constant oxygen transfer rate. Bioprocess Eng 11:167–175

    CAS  Google Scholar 

  • Chen X, Zhang D-J, Qi W-T, Gao S-J, Xiu Z-L, Xu P (2003) Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl Microbiol Biotechnol 63:143–146

    CAS  PubMed  Google Scholar 

  • Cheng K-K, Zhang J-A, Liu D-H, Sun Y, Liu H-J, Yang M-D, Xu J-M (2007) Pilot-scale production of 1,3-propanediol using Klebsiella pneumoniae. Process Biochem 42:740–744

    CAS  Google Scholar 

  • Cho M-H, Joen SI, Pyo S-H, Mun S, Kim J-H (2006) A novel separation and purification process for 1,3-propanediol. Process Biochem 41(3):739–744

    CAS  Google Scholar 

  • Corbin DR, Norton T (2003) Process to separate 1,3-propanediol or glycerol, or a mixture thereof from a biological mixture. United States Patent 6 603 048

  • Deckwer WD (1995) Microbial conversion of glycerol production to 1,3-propanediol. FEMS Microbiol Rev 16:143–149

    CAS  Google Scholar 

  • Eiteman MA, Gainer JL (1989) In situ extraction versus the use of an external column in fermentation. Appl Microbiol Biotechnol 30:614–618

    CAS  Google Scholar 

  • Gao S, Zhang D, Sun Y, Xiu Z (2007) Separation of 1,3-propanediol from glycerol-based fermentations of Klebsiella pneumoniae by alcohol dilution crystallization. Front Chem Eng China 1(2):202–207

    CAS  Google Scholar 

  • Garg SK, Jain A (1995) Fermentative production of 2,3-butanediol: a review. Bioresour Technol 51:103–109

    CAS  Google Scholar 

  • Ghosh S, Swaminathan T (2003) Optimization of process variables for the extractive fermentation of 2,3-butanediol by Klebsiella oxytoca in aqueous two-phase system using response surface methodology. Chem Biochem Eng Q 17(4):319–325

    CAS  Google Scholar 

  • Gong Y, Tong Y, Wang XL, Liu DH (2004) The possibility of the desalination of actual 1,3-propanediol fermentation broth by electrodialysis. Desalination 161:169–178

    CAS  Google Scholar 

  • Greve A, Kula MR (1990) Cost structure and estimation for the recycling of salt in a protein extraction process system. Bioprocess Eng 6:173–177

    Google Scholar 

  • Grothe E (2000) Konzeption und Wirtschaftlichkeit der industriellen Glycerinvergärung zu 1,3-Propandiol. Dissertation, VDI Verlag GmbH, Düsseldorf 2000

  • Günzel B (1991) Mikrobielle Herstellung von 1,3-Propandiol durch Clostridium butyricum und adsorptive Aufarbeitung von diolen. Dissertation, Technischen Universität Braunschweig

  • Günzel B, Berke CH, Ernst S (1990) Adsorption von Diolen aus Fermentationsmedien an hydrophobe Zeolithe. Chem Ing Tech 62(9):7482750

    Google Scholar 

  • Hao J, Liu DH (2005) Desalination of fermented broth containing 1,3-propanediol by electrodialysis. Chinese J Proc Eng 5:36–39

    CAS  Google Scholar 

  • Hao J, Liu HJ, Liu DH (2005) Novel route of reactive extraction to recover 1,3-propanediol from a dilute aqueous solution. Ind Eng Chem Res 44:4380–4385

    CAS  Google Scholar 

  • Hao J, Xu F, Liu H, Liu D (2006) Downstream processing of 1,3-propanediol fermentation broth. J Chem Technol Biotechnol 81:102–108

    CAS  Google Scholar 

  • Hartlep M, Hussmann W, Prayitno N, Meynial-Salles I, Zeng AP (2002) Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Appl Microbiol Biotechnol 60:60–66

    CAS  PubMed  Google Scholar 

  • Hermann BG, Patel M (2007) Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology: a techno-economic analysis. Appl Biochem Biotechnol 136:361–388

    CAS  PubMed  Google Scholar 

  • Hilaly AK, Binder TP (2002) Method of recovering 1,3-propanediol from fermentation broth. United States Patent 6 479 716

    Google Scholar 

  • Hu B-L, Qiu X-Q, Yang D-J (2003) Separation of butanol–acetone–water system using repulsive extraction. Journal of South China University of Technology (Natural Science Edition) 31(12):58–62

    CAS  Google Scholar 

  • Kelsey DR (1996) Purification of 1,3-propanediol. US Patent 5. 527. 973

  • Kula MR, Krone KH, Hustedt H (1982) Purification of enzymes by liquid–liquid extraction. In: Fiechter A (ed) Advances in biochemical engineering, vol 24. Springer, Berlin, pp 73–118

    Google Scholar 

  • Kurian JV (2005) A new polymer platform for the future—Sorona from corn derived 1,3-propanediol. J Polym Environ 13(2):159–167

    CAS  Google Scholar 

  • Laffend LA, Nagarajan V, Nakamura CE (2007) Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism, United States Patent Application, 20070048849A1

  • Li S, Tuan VA, Falconer JL, Noble RD (2001a) Separation of 1,3-propanediol from glycerol and glucose using a ZSM-5 zeolite membrane. J Membr Sci 191:53–59

    CAS  Google Scholar 

  • Li S, Tuan VA, Falconer JL, Noble RD (2001b) Separation of 1,3-propanediol from aqueous solutions using pervaporation through an X-type zeolite membrane. Ind Eng Chem Res 40(8):1952–1959

    CAS  Google Scholar 

  • Li S, Tuan VA, Falconer JL, Noble RD (2001c) Effects of zeolite membrane structure on the separation of 1,3-propanediol from glycerol and glucose by pervaporation. Chem Mater 13(5):1865–1873

    CAS  Google Scholar 

  • Li S, Tuan VA, Falconer JL, Noble RD (2002) X-type zeolite membranes: preparation, characterization, and pervaporation performance. Microporous Mesoporous Mater 53(1–3):59–70

    CAS  Google Scholar 

  • Liu H-J, Zhang D-J, Xu Y-H, Mu Y, Sun Y-Q, Xiu Z-L (2007) Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale. Biotechnol Lett 29(8):1281–1285

    CAS  PubMed  Google Scholar 

  • Louwrier A (1998) Model phase separations of proteins using aqueous/ethanol components. Biotechnol Tech 12(5):363–365

    CAS  Google Scholar 

  • Malinowski JJ (1999) Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol. Biotechnol Tech 13:127–130

    CAS  Google Scholar 

  • Malinowski JJ (2000) Reactive extraction for downstream separation of 1,3-propanediol. Biotechnol Prog 16:76–79

    CAS  PubMed  Google Scholar 

  • Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol 20:82–86

    CAS  Google Scholar 

  • Mu Y, Zhang D, Teng H, Wang W, Xiu Z (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparation. Biotechnol Lett 28:1755–1759

    CAS  PubMed  Google Scholar 

  • Nakamura CE, Whitedy GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    CAS  PubMed  Google Scholar 

  • Othmer DF, Bergen WS, Shlechter N, Bruins PF (1945) Liquid–liquid extraction data: systems used in butadiene manufacture from butylenes glycol. Ind Eng Chem 37(9):890–894

    CAS  Google Scholar 

  • Qureshi N, Meagher MM, Hutjins RW (1994) Recovery of 2,3-butanediol by vacuum membrane distillation. Sep Sci Technol 29(13):1733–1748

    CAS  Google Scholar 

  • Roturier JM, Fouache C, Berghmans E (2002) Process for the purification of 1,3-propanediol from a fermentation medium. United States Patent 6 428 992

  • Saha BC (2003) Hemocellulose bioconversion. J Ind Microbiol Biotech 30:279–291

    CAS  Google Scholar 

  • Sanz MT, Blanco B, Beltran S, Cabezas JI (2001) Vapor liquid equilibria of binary and ternary systems with water, 1,3-propanediol, and glycerol. J Chem Eng Data 46:635–639

    Google Scholar 

  • Schlieker H, Günzel B, Deckwer WD (1992) Einsatz der Adsorption zur Produtsabtrennung bei der Glycerinvergarung zu 1, 3-Propanediol. Chem Ing Tech 64(8):7272728

    Google Scholar 

  • Schoellner R, EInicke WD, Unverricht S (1994) Investigations of adsorptive separation of glycerol/propane-1,3-diol in aqueous solution on zeolites by liquid phase adsorption. J Prakt Chem 336(5):404–407

    CAS  Google Scholar 

  • Senkus M (1946) Recovery of 2,3-butanediol produced by fermentation. Ind Eng Chem 38:913–916

    CAS  Google Scholar 

  • Sridhar S (1989) Zur Abtrennung von Butandiol-2,3 aus Fermenter-Brühen mit Hife der Umkehrosmose. Chem Ing Tech 61(3):252–253

    CAS  Google Scholar 

  • Syu M-J (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18

    CAS  PubMed  Google Scholar 

  • Tan T, Huo Q, Ling Q (2002) Purification of glycyrrhizin from Glycyrrhiza uralensis Fisch with ethanol/phosphate aqueous two phase system. Biotechnol Lett 24:1417–1420

    CAS  Google Scholar 

  • Tsao GT (1978) Conversion of biomass from agriculture into useful products. Final Report, USDDE Contact No. EG-77-S-02-4298

  • Wheat JA, Leslie JD, Tomkins RV, Mitton HE, Scott DS, Ledingham GA (1948) Production and properties of 2,3-butanediol. XXVIII. Pilot plant recovery of levo-2,3-butanediol from whole wheat mashes fermented by Aerobacillus polymyxa. Can J Res 26F:469–496

    CAS  Google Scholar 

  • Wilkins AE, Lowe DJ (2004) Product removal process for use in a biofermentation system, United States Patent 6,812,000

  • Xiang BT, Chen SF, Liu DH (2001) Extraction of 1,3-propanediol from in dilute fermentation broth. Journal of Tsinghua University (Science and Technology) 41(12):53–55

    CAS  Google Scholar 

  • Xiu ZL, Chen X, Sun YQ, Zhang DJ (2007a) Stoichiometric analysis and experimental investigation of glycerol–glucose cofermentation in Klebsiella pneumoniae under microaerobic conditions. Biochem Eng J 33:42–52

    CAS  Google Scholar 

  • Xiu ZL, Zhang D, Li X (2007b) Recovery of 1,3-propanediol from fermentation broths by using ammonium sulfate salting out, Chinese Patent, 2006101346958

  • Xiu ZL, Li Z, Jianng B, Sun Y, Zhang D (2007c) Aqueous two-phase extraction of 1,3-propanediol from fermentation broth, Chinese Patent, 200710010201.X

  • Xu W-Y (2001) Separation of ethanol–acetone–butanol–water system using potassium carbonate. Chinese J Proc Eng 1(3):318–320

    CAS  Google Scholar 

  • Yang G, Tian J, Li J (2007) Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73:1017–1024

    CAS  PubMed  Google Scholar 

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219

    CAS  PubMed  Google Scholar 

  • Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng 74:239–59

    CAS  Google Scholar 

  • Zeng A-P, Byun T-G, Posten C, Deckwer W-D (1994) Use of the respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions. Biotechnol Bioeng 44:1107–1114

    CAS  PubMed  Google Scholar 

  • Zhi W, Deng Q (2006) Purification of salvianolic acid B from the crude extract of Salvia miltiorrhiza with hydrophilic organic/salt-containing aqueous two-phase system by counter-current chromatography. J Chromatogr A 1116:149–152

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Major State Basic Research Development Program of China (973 Program; No. 2007CB714306) and the Teaching and Research Award Program for Outstanding Young Teachers (to Z.-L. Xiu) in High Education Institutions of Ministry of Education of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Long Xiu or An-Ping Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiu, ZL., Zeng, AP. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol 78, 917–926 (2008). https://doi.org/10.1007/s00253-008-1387-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1387-4

Keywords

Navigation