Skip to main content
Log in

Flavour formation in fungi: characterisation of KlAtf, the Kluyveromyces lactis orthologue of the Saccharomyces cerevisiae alcohol acetyltransferases Atf1 and Atf2

Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages, such as beer and wine. In the brewers’ yeast Saccharomyces cerevisiae, the major part of these esters is formed by two alcohol acetyltransferases, Atf1 and Atf2. In this paper, the existence of orthologues of these S. cerevisiae alcohol acetyltransferases in several ascomycetous fungi was investigated. Bioinformatic analysis of sequenced fungal genomes revealed the presence of multiple orthologues. The Saccharomyces sensu stricto yeasts all have two genes coding for orthologues. More distantly related fungi like Saccharomyces castelii, Candida glabrata, Kluyveromyces waltii and Kluyveromyces lactis have only one orthologue in their genome. The homology between the identified proteins and the S. cerevisiae alcohol acetyltransferases suggests a role for these orthologues in the aroma-active ester formation. To verify this, the K. lactis orthologue KlAtf was cloned and expressed in S. cerevisiae. Gas chromatographic analysis of small-scale fermentations with the transformant strains showed that, while S. cerevisiae ATF1 overexpression resulted in a substantial increase in acetate ester levels, S. cerevisiae ATF2 and K. lactis ATF overexpression only caused a moderate increase in acetate esters. This study is the first report of the presence of an ester synthesis gene in K. lactis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Akita O, Suzuki S, Obata T, Hara S (1990) Purification and some properties of alcohol acetyltransferase from sake yeast. Agric Biol Chem 54:1485–1490

    CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausubel FMR, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1994) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Balakrishnan R, Christie KR, Costanzo MC, Dolinski K, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hong EL, Nash R, Oughtred R, Skrzypek M, Theesfeld CL, Binkley G, Dong Q, Lane C, Sethuraman A, Weng S, Botstein D, Cherry JM (2005) Fungal BLAST and Model Organism BLASTP Best Hits: new comparison resources at the Saccharomyces Genome Database (SGD). Nucleic Acids Res 33:D374–D377

    CAS  PubMed  Google Scholar 

  • Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, Aharoni A (2004) Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol 135:1865–1878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li JC, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    CAS  PubMed  Google Scholar 

  • Byrne KP, Wolfe KH (2006) Visualizing syntenic relationships among the hemiascomycetes with the Yeast Gene Order Browser. Nucleic Acids Res 34:D452–D455

    CAS  PubMed  Google Scholar 

  • Casey GP, Xiao W, Rank GH (1988) A convenient dominant selection marker for gene-transfer in industrial strains of Saccharomyces yeast—Smri encoded resistance to the herbicide sulfometuron methyl. J Inst Brew 94:93–97

    CAS  Google Scholar 

  • Cauet G, Degryse E, Ledoux C, Spagnoli R, Achstetter T (1999) Pregnenolone esterification in Saccharomyces cerevisiae—a potential detoxification mechanism. Eur J Biochem 261:317–324

    CAS  PubMed  Google Scholar 

  • Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71–76

    CAS  PubMed  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    PubMed  Google Scholar 

  • Dujon B, Sherman DJ, Fischer G, Durrens P, Casaregola S, Lafontaine I, deMontigny J, Marck C, Neuvéglise C, Talla E, Goffard N, Frangeuland L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boiramé A, Boyer J, Cattolico L, Confanioleri F, deDaruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztaand S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennene D, Tekaia F, Wésolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430:35–44

    PubMed  Google Scholar 

  • Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer ELL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251

    CAS  PubMed  Google Scholar 

  • Fujii T, Nagasawa N, Iwamatsu A, Bogaki T, Tamai W, Hamachi M (1994) Molecular-cloning, sequence-analysis, and expression of the yeast alcohol acetyltransferase gene. Appl Environ Microbiol 60:2786–2792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii T, Yoshimoto H, Nagasawa N, Bogaki T, Tamai Y, Hamachi M (1996) Nucleotide sequences of alcohol acetyltransferase genes from lager brewing yeast, Saccharomyces carlsbergensis. Yeast 12:593–598

    CAS  PubMed  Google Scholar 

  • Fujiwara D, Yoshimoto H, Sone H, Harashima S, Tamai Y (1998) Transcriptional co-regulation of Saccharomyces cerevisiae alcohol acetyltransferase gene, ATF1 and Delta-9 fatty acid desaturase gene, OLE1 by unsaturated fatty acids. Yeast 14:711–721

    CAS  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH (1995) Transforming yeast with DNA. Methods Mol Cell Biol 5:255–269

    Google Scholar 

  • Hammond JRM (1993) Brewer’s yeast. In: Rose HA, Harrison JS (eds) The yeasts. Academic, London, pp 7–67

    Google Scholar 

  • Ihmels J, Collins SR, Schuldiner M, Krogan NJ, Weissman JS (2007) Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss. Mol Syst Biol 3:86

    PubMed  PubMed Central  Google Scholar 

  • Kashima Y, Iijima M, Nakano T, Tayama K, Koizumi W, Udaka S, Yanagida F (2000) Role of intracellular esterases in the production of esters by Acetobacter pasteurianus. J Biosci Bioeng 89:81–83

    CAS  PubMed  Google Scholar 

  • Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254

    CAS  PubMed  Google Scholar 

  • Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624

    CAS  PubMed  Google Scholar 

  • Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66:744–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lilly M, Bauer FF, Lambrechts MG, Swiegers JH, Cozzolino D, Pretorius IS (2006) The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast 23:641–659

    CAS  PubMed  Google Scholar 

  • Liu SQ, Holland R, Crow VL (2004) Esters and their biosynthesis in fermented dairy products: a review. Int Dairy J 14:923–945

    CAS  Google Scholar 

  • Malcorps P, Dufour JP (1992) Short-chain and medium-chain aliphatic ester synthesis in Saccharomyces cerevisiae. Eur J Biochem 210:1015–1022

    CAS  PubMed  Google Scholar 

  • Martin N, Berger C, Le Du C, Spinnier HE (2001) Aroma compound production in cheese curd by coculturing with selected yeast and bacteria. J Dairy Sci 84:2125–2135

    Article  CAS  PubMed  Google Scholar 

  • Mason AB, Dufour JP (2000) Alcohol acetyltransferases and the significance of ester synthesis in yeast. Yeast 16:1287–1298

    CAS  PubMed  Google Scholar 

  • Meilgaard MC (1975) Flavor chemistry of beer. Flavor and threshold of 239 aroma volatiles. MBAA Tech Q 12:151–168

    CAS  Google Scholar 

  • Minetoki T, Bogaki T, Iwamatsu A, Fujii T, Hamachi M (1993) The purification, properties and internal peptide sequences of alcohol acetyltransferase isolated from Saccharomyces cerevisiae Kyokai No 7. Biosci Biotechnol Biochem 57:2094–2098

    CAS  PubMed  Google Scholar 

  • Momoi M, Tanoue D, Sun YD, Takematsu H, Suzuki Y, Suzuki M, Suzuki A, Fujita T, Kozutsumi Y (2004) SLI1 (YGR212W) is a major gene conferring resistance to the sphingolipid biosynthesis inhibitor ISP-1, and encodes an ISP-1N-acetyltransferase in yeast. Biochem J 381:321–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagasawa N, Bogaki T, Iwamatsu A, Hamachi M, Kumagai C (1998) Cloning and nucleotide sequence of the alcohol acetyltransferase II gene (ATF2) from Saccharomyces cerevisiae Kyokai No. 7. Biosci Biotechnol Biochem 62:1852–1857

    CAS  PubMed  Google Scholar 

  • Nordström K (1964) Formation of esters from alcohols by brewer’s yeast. J Inst Brew 70:328–336

    Google Scholar 

  • Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH (2006) Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440:341–345

    CAS  PubMed  Google Scholar 

  • Scannell DR, Frank AC, Conant GC, Byrne KP, Woolfit M, Wolfe KH (2007) Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Proc Natl Acad Sci U S A 104:8397–8402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman F, Fink GR, Hicks J (1991) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Snoek ISI, Steensma HY (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6:393–403

    CAS  PubMed  Google Scholar 

  • Spaepen M, Verachtert H (1982) Esterase activity in the genus Brettanomyces. J Inst Brew 88:11–17

    CAS  Google Scholar 

  • Tamai Y, Momma T, Yoshimoto H, Kaneko Y (1998) Co-existence of two types of chromosome in the bottom fermenting yeast, Saccharomyces pastorianus. Yeast 14:923–933

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Dufour JP, Winderickx J, Thevelein JM, Pretorius IS, Delvaux FR (2003a) Flavor-active esters: adding fruitiness to beer. J Biosci Bioeng 96:110–118

    CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Van Laere SDM, Vanderhaegen BMP, Derdelinckx G, Dufour JP, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2003b) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69:5228–5237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verstrepen KJ, Van Laere SDM, Vercammen J, Derdelinckx G, Dufour JP, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2004) The Saccharomyces cerevisiae alcohol acetyl transferase Atf1p is localized in lipid particles. Yeast 21:367–376

    CAS  PubMed  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    CAS  PubMed  Google Scholar 

  • Wolfe K (2004) Evolutionary genomics: yeasts accelerate beyond BLAST. Curr Biol 14:R392–R394

    CAS  PubMed  Google Scholar 

  • Woolfit M, Wolfe K (2005) The gene duplication that greased society’s wheels. Nat Genet 37:566–547

    CAS  PubMed  Google Scholar 

  • Yoshimoto H, Fujiwara D, Momma T, Ito C, Sone H, Kaneko Y, Tamai Y (1998) Characterization of the ATF1 and Lg-ATF1 genes encoding alcohol acetyltransferases in the bottom fermenting yeast Saccharomyces pastorianus. J Ferment Bioeng 86:15–20

    CAS  Google Scholar 

  • Yoshimoto H, Fujiwara D, Momma T, Tanaka K, Sone H, Nagasawa N, Tamai Y (1999) Isolation and characterization of the ATF2 gene encoding alcohol acetyltransferase II in the bottom fermenting yeast Saccharomyces pastorianus. Yeast 15:409–417

    CAS  PubMed  Google Scholar 

  • Yoshioka K, Hashimoto N (1981) Ester formation by alcohol acetyltransferase from brewers yeast. Agric Biol Chem 45:2183–2190

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Fund for Scientific Research-Flanders (FWO Project G.0082.03) and the Research Fund of the K.U. Leuven (OT/03/40) (to J. M. T. and F. R. D.). The authors wish to thank Sarina Michiels for her excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stijn D. M. Van Laere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Laere, S.D.M., Saerens, S.M.G., Verstrepen, K.J. et al. Flavour formation in fungi: characterisation of KlAtf, the Kluyveromyces lactis orthologue of the Saccharomyces cerevisiae alcohol acetyltransferases Atf1 and Atf2. Appl Microbiol Biotechnol 78, 783–792 (2008). https://doi.org/10.1007/s00253-008-1366-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1366-9

Keyword

Navigation