Skip to main content

Advertisement

Log in

High-level expression and purification of Tat-haFGF19-154

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Human acidic fibroblast growth factor (haFGF) stimulates repair and regeneration of central and peripheral nerves after various injuries. However, it is unable to cross the blood–brain barrier (BBB). To produce a therapeutic haFGF with cell-permeable activity, we fused the haFGF19-154 gene with Tat-PTD. After its construction by a single-step insertion of a polymerase chain reaction (PCR)–amplified coding sequence, the vector pTat-haFGF19-154-His was expressed in Escherichia coli BL21 (DE3) cells. The optimal expression level of the soluble fusion protein was up to 36.7% of the total cellular protein. The recombinant Tat-haFGF19-154-His was purified by a combination of Ni–NTA affinity, Sephadex G-25, and heparin affinity chromatography to 95% as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The final yield was 171 mg/l culture. Purified Tat-haFGF19-154-His had distinct mitogenic activity in Balb/c 3T3 cells, as measured by methylthiazoletetrazolium (MTT) assay and its ED50 was 3.931 × 10−4 µmol/l. Tat-haFGF19-154-His protein intravenously injected at the dose of 10 mg/kg could be detected in the pallium and hippocampi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexi T, Borlongan CV, Faull RL, Williams CE, Clark RG, Gluckman PD, Hughes PE (2000) Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Prog Neurobiol 60:409–470

    Article  CAS  Google Scholar 

  • Bannerman PG, Oliver TM, Xu Z, Shieh DE (1996) Pleasure, Effects of FGF-1 and FGF-2 on GD3 immunoreactive spinal neuroepithelial cells. J Neurosci Res 45:549–557

    Article  CAS  Google Scholar 

  • Bayley H (1999) Protein therapy-delivery guaranteed. Nat Biotechnol 17:1066–1067

    Article  CAS  Google Scholar 

  • Cao G, Pei W, Ge H, Liang Q, Luo Y, Sharp FR, Lu A, Ran R, Graham SH, Chen J (2002) In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J Neurosci 22:5423–5431

    Article  CAS  Google Scholar 

  • Cuevas P, Carceller F, Lozano RM, Crespo A, Zazo M, Gimenez-Gallego G (1997) Protection of rat myocardium by mitogenic and non-mitogenic fibroblast growth factor during post-ischemic reperfusion. Growth Factors 15:29–40

    Article  CAS  Google Scholar 

  • Cuevas P, Carceller F, Munoz-Willery I, Gimenez-Gallego G (1998) Intravenous fibroblast growth factor penetrates the blood–brain barrier and protects hippocampal neurons against ischemia–reperfusion injury. Surg Neurol 49:77–83

    Article  CAS  Google Scholar 

  • Cuevas P, Gimenez-Gallego G (1996) Antiepileptic effects of acidic fibroblast growth factor examined in kainic acid-mediated seizures in the rat. Neurosci Lett 203:66–68

    Article  CAS  Google Scholar 

  • Cuevas P, Revilla C, Herreras O, Largo C, Gimenez-Gallego G (1994) Neuroprotective effect of acidic fibroblast growth factor on seizure-associated brain damage. Neurol Res 16:365–369

    Article  CAS  Google Scholar 

  • Date I, Notter MF, Felten SY, Felten DL (1990) MPTP- treated young mice but not aging mice show partial recovery of the nigrostriatal dopaminergic system by stereotaxic injection of acidic fibroblast growth factor (aFGF). Brain Res 526:156–160

    Article  CAS  Google Scholar 

  • Dietz GPH, Kilic E, Bähr M (2002) Inhibition of neuronal apoptosis in vitro and in vivo using TAT-mediated protein transduction. Mol Cell Neurosci 21:29–37

    Article  CAS  Google Scholar 

  • Dietz GPH, Valbuena PC, Dietz B, Meuer K, Müller P, Weishaupt JH, Bähr M (2006) Application of a blood–brain-barrier-penetrating form of GDNF in a mouse model for Parkinson’s disease. Brain Res 1082:61–66

    Article  CAS  Google Scholar 

  • Elliott G, O’Hare P (1997) Intercellular trafficking and protein delivery by a herpes virus structural protein. Cell 88:223–233

    Article  CAS  Google Scholar 

  • Emerich DF, Dean RL, Osborn C, Bartus RT (2001) The development of the bradykinin agonist labradimil as a means to increase the permeability of the blood-brain barrier: from concept to clinical evaluation. Clin Pharmacokinet 40:105–123

    Article  CAS  Google Scholar 

  • Engele J, Bohn MC (1992) Effects of acidic and basic fibroblast growth factors on glial precursor cell proliferation: age dependency and brain region specificity. Dev Biol 152:363–372

    Article  CAS  Google Scholar 

  • Federoff HJ, Geschwind MD, Geller AI, Kessler JA (1992) Expression of nerve growth factor in vivo from a defective herpes simplex virus 1 vector prevents effects of axotomy on sympathetic ganglia. Proc Natl Acad Sci USA 89:1636–1640

    Article  CAS  Google Scholar 

  • Figueiredo BC, Pluss K, Skup M, Otten U, Cuello AC (1995) Acidic FGF induces NGF and its mRNA in the injured neocortex of adult animals. Mol Brain Res 33:1–6

    Article  Google Scholar 

  • Gimenez-Gallego G, Cuevas P (1994) Fibroblast growth factors, proteins with a broad spectrum of biological activities. Neurol Res 16:313–316

    Article  CAS  Google Scholar 

  • Imamura T, Engleka K, Zhan X, Tokita Y, Forough R, Roeder D, Jackson A, Maier JA, Hla T, Maciag T (1990) Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science 249:1567–1570

    Article  CAS  Google Scholar 

  • Jankowsky JL, Patterson PH (2001) The role of cytokines and growth factors in seizures and their sequelae. Prog Neurobiol 63:125–149

    Article  CAS  Google Scholar 

  • Kilic Ü, Kilic E, Dietz GPH, Bähr M (2003) Intravenous TAT-GDNF is protective after focal cerebral ischemia in mice. Stroke 34:1304–1310

    Article  Google Scholar 

  • Kim DW, Eum WS, Jang SH, Kim SY, Choi HS, Choi SH, An JJ, Lee SH, Lee KS, Han K, Kang TC, Won MH, Kang JH, Kwon OS, Cho SW, Kim TY, Park J, Choi SY (2005) Transduced TAT–SOD fusion protein protects against ischemic brain injury. Mol Cells 19:88–96

    CAS  PubMed  Google Scholar 

  • Klingenberg O, Wiedlocha A, Olsnes S (2000) Requirement of PI 3-kinase activity for translocation of exogenous aFGF both to cytosol and nucleus. J Biol Chem 275:11972–11980

    Article  CAS  Google Scholar 

  • Klingenberg O, Wiedlocha A, Rapak A, Munoz R, Falnes PO, Olsnes S (1998) Inability of the acidic fibroblast growth factor mutant K132E to stimulate DNA synthesis after translocation into cells. J Biol Chem 273:11164–11172

    Article  CAS  Google Scholar 

  • Li AJ, Oomura QY, Sasaki K, Suzuki K, Tooyama I, Hanai K, Kimura H, Hori T (1998) A single pre-training glucose injection induces memory facilitation in rodents performing various tasks: contribution of acidic fibroblast growth factor. Neuroscience 85:785–794

    Article  CAS  Google Scholar 

  • Lin YZ, Yao SY, Hawiger J (1996) Role of the nuclear localization sequence in fibroblast growth factor-1- stimulated mitogenic pathways. J Biol Chem 271:5305–5308

    Article  CAS  Google Scholar 

  • Lipton SA, Wangner JA, Maison RD, D’Amore PA (1988) Acidic fibroblast growth factor enhances regeneration of processes by postnatal mammalian retinal ganglion cells in culture. Proc Natl Acad Sci USA 85:2388–2392

    Article  CAS  Google Scholar 

  • Lozano RM, Pineda-Lucena A, Gonzalez C, Angeles-Jimenez M, Cuevas P, Redondo-Horcajo M, Sanz JM, Rico M, Gimenez-Gallego G (2000) 1H NMR structural characterization of a nonmitogenic, vasodilatory, ischemia-protector and neuromodulatory acidic fibroblast growth factor. Biochem 39:4982–4993

    Article  CAS  Google Scholar 

  • Luo Y, Gabriel JL, Wang F, Zhan X, Maciag T, Kan M, McKeehan WL (1996) Molecular modeling and deletion mutagenesis implicate the nuclear translocation sequence in structural integrity of fibroblast growth factor-1. J Biol Chem 271:26876–26883

    Article  CAS  Google Scholar 

  • Mufson EJ, Kroin JS, Sendera TJ, Sobreviela T (1999) Distribution and retrograde transport of trophic factors in the central nervous system: functional implications for the treatment of neurodegenerative diseases. Prog Neurobiol 57:451–484

    Article  CAS  Google Scholar 

  • Rapoport SI (2000) Osmotic opening of the blood–brain barrier: principles mechanism and therapeutic applications. Cell Mol Neurobiol 20:217–230

    Article  CAS  Google Scholar 

  • Sasaki K, Oomura Y, Suzuki K, Hanai K, Yagi H (1992) Acidic fibroblast growth factor prevents death of hippocampal CA1 pyramidal cells following ischemia. Neurochem Int 21:397–402

    Article  CAS  Google Scholar 

  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  CAS  Google Scholar 

  • Sengoku T, Bondada V, Hassane D, Dubal S, Geddes JW (2004) Tat-calpastatin fusion proteins transduce primary rat cortical neurons but do not inhibit cellular calpain activity. Exp Neurol 188:161–170

    Article  CAS  Google Scholar 

  • Wiedlocha A, Falnes PO, Rapak A, Munoz R, Klingenberg O, Olsnes S (1996) Stimulation of Proliferation of a human osteosarcoma cell line by exogenous acidic fibroblast growth factor requires both activation of receptor tyrosine kinase and growth factor internalization. Mol Cell Biol 16:270–280

    Article  CAS  Google Scholar 

  • Wilcox BJ, Unnerstall JR (1991) Expression of acidic fibroblast growth factor mRNA in the developing and adult rat brain. Neuron 6:397–409

    Article  CAS  Google Scholar 

  • Wu SP, Fu AL, Wang YX, Yu LP, Jia PY, Li Q, Jin GZ, Sun MJ (2006) A novel therapeutic approach to 6-OHDA-induced Parkinson’s disease in rats via supplementation of PTD-conjugated tyrosine hydroxylase. Biochem Biophys Res Commun 346:1–6

    Article  CAS  Google Scholar 

  • Wu X, Su Z, Li X, Zheng Q, Huang Y, Yuan H (2005) High-level expression and purification of a nonmitogenic form of human acidic fibroblast growth factor in Escherichia coli. Protein Expr Purif 42:7–11

    Article  CAS  Google Scholar 

  • Wu X, Su Z, Zheng Q, Huang Y, Li X (2004) Expression and activity identification of shortened human acidic fibroblast growth factor. Journal of China Pharmaceutical University 35:470–473

    Google Scholar 

  • Yin W, Cao G, Johnnides MJ, Signore AP, Luo Y, Hickey RW, Chen J (2006) TAT-mediated delivery of Bcl-xL protein is neuroprotective against neonatal hypoxic–ischemic brain injury via inhibition of caspases and AIF. Neurobiol Dis 21:358–371

    Article  CAS  Google Scholar 

  • Zalecki P, Radzikowski C, Olsnes S, Wiedlocha A (1998) Modulation by interleukin-2 of cellular response to fibroblast growth factor-1 in F69-3 fibrosarcoma cells. Exp Cell Res 244:61–70

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to Dr. Xionglei He for helpful comments on this manuscript. This project was supported in part by grants from the National High-Tech Research and Development Program of China (2002AA2Z3318 and 2001AA215131), National Natural Science Foundation (30670541), National Basic Research Priorities Program (G1999054204), the Program of New Century Excellent Talents in University (X. Li), Zhejiang Provincial Program for Innovative Scientists in Health Sciences (X. Li) and Zhejiang Provincial Natural Science Foundation (Z205755)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenke Feng or Xiaokun Li.

Additional information

Yadong Huang and Yulan Rao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Rao, Y., Feng, C. et al. High-level expression and purification of Tat-haFGF19-154 . Appl Microbiol Biotechnol 77, 1015–1022 (2008). https://doi.org/10.1007/s00253-007-1249-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1249-5

Keywords

Navigation