Skip to main content
Log in

Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Strain ZJB-063, a versatile nitrile-amide-degrading strain, was newly isolated from soil in this study. Based on morphology, physiological tests, Biolog and the 16S rDNA sequence, strain ZJB-063 was identified as Bacillus subtilis. ZJB-063 exhibited nitrilase activity without addition of inducers, indicating that the nitrilase in B. subtilis ZJB-063 is constitutive. Interestingly, the strain exhibited nitrile hydratase and amidase activity with the addition of ɛ-caprolactam. Moreover, the substrate spectrum altered with the alteration of enzyme systems due to the addition of ɛ-caprolactam. The constitutive nitrilase was highly specific for arylacetonitriles, while the nitrile hydratase/amidase in B. subtilis ZJB-063 could not only hydrolyze arylacetonitriles but also other nitriles including some aliphatic nitriles and heterocyclic nitriles. Despite comparatively low activity, the amidase of hydratase/amidase system was effective in converting amides to acids. The versatility of this strain in the hydrolysis of various nitriles and amides makes it a potential biocatalyst in organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almatawah QA, Cramp R, Cowan DA (1999) Characterization of an inducible nitrilase from a thermophilic Bacillus. Extremophiles 3:283–291

    Article  CAS  Google Scholar 

  • Banerjee A, Kaul P, Banerjee UC (2006) Purification and characterization of an enantioselective arylacetonitrilase from Pseudomonas putida. Arch Microbiol 184:407–418

    Article  CAS  Google Scholar 

  • Bhalla TC, Kumar H (2005) Nocardia globerula NHB-2: A versatile nitrile-degrading organism. Can J Microbiol 51:705–708

    Article  CAS  Google Scholar 

  • Cramp RA, Cowan DA (1999) Molecular characterization of a novel thermophilic nitrile hydratase. Biochim Biophys Acta 1431:249–260

    Article  CAS  Google Scholar 

  • Geresh S, Giron Y, Gilboa Y, Glaser R (1993) Electronic substituent effects in the nitrilase-catalyzed hydrolysis of para-substituted benzyl cyanides. Tetrahedron 49:10099–10101

    Article  CAS  Google Scholar 

  • Harper DB (1985) Characterization of a nitrilase from Nocardia sp. (Rhodochrous group) NCIB 11215, using p-hydroxybenzonitrile as sole carbon source. Int J Biochem 17:677–683

    Article  CAS  Google Scholar 

  • Holt JG, Kreig NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Hoyle AJ, Bunch AW, Knowles CJ (1998) The nitrilases of Rhodococcus rhodochrous NCIMB 11216. Enzyme Microb Technol 23:475–482

    Article  CAS  Google Scholar 

  • Hu JG, Wang YJ, Zheng YG, Shen YC (2007) Isolation of glycolonitrile-hydrolyzing microorganism based on colorimetric reaction. Enzyme Microb Technol 41:244–249

    Article  CAS  Google Scholar 

  • Jitendra S, Wagh AA, Mokashi AD (1991) A high-performance liquid chromatographic method for the monitoring and quantification of the synthesis of p-hydroxyphenylacetamide. J Chromatogr 587:280–283

    Article  Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1989) Nitrilase of Rhodococcus rhodochrous J1. Purification and characterization. Eur J Biochem 182:349–356

    Article  CAS  Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1992) Enzymatic synthesis of acrylamide: a success story not yet over. Trends Biotechnol 10:402–408

    Article  CAS  Google Scholar 

  • Kobayashi M, Yanaka N, Nagasawa T, Yamada H (1990) Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. J Bacteriol 172:4807–4815

    Article  CAS  Google Scholar 

  • Layh N, Hirrlinger B, Stolz A, Knackmuss HJ (1997) Enrichment strategies for nitrile-hydrolyzing bacteria. Appl Microbiol Biotechnol 47:668–674

    Article  CAS  Google Scholar 

  • Layh N, Parratt J, Willetts A (1998) Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J Mol Catal B Enzym 5:467–474

    Article  CAS  Google Scholar 

  • Liu ZQ, Li Y, Ping LF, Xu YY, Cui FF, Xue YP, Zheng YG (2007) Isolation and identification of a novel Rhodococcus sp. ML-0004 producing epoxide hydrolase and optimization of enzyme production. Process Biochem 42:889–894

    Article  CAS  Google Scholar 

  • Liu ZQ, Sun ZH (2004) Cloning and expression of D-lactonohydrolase cDNA from Fusarium moniliforme in Saccharomyces cerevisiae. Biotech Lett 26:1861–1865

    Article  CAS  Google Scholar 

  • Liu ZQ, Sun ZH, Leng Y (2006) Directed Evolution of D-pactonohydrolase from Fusarium moniliforme. J Agric Food Chem 54:5823–5830

    Article  CAS  Google Scholar 

  • Mathew CD, Nagasawa T, Kobayashi M, Yamada H (1988) Nitrilase-catalyzed production of nicotinic acid from 3-cyanopyridine in Rhodococcus rhodochrous J1. Appl Environ Microbiol 54:1030–1032

    Article  CAS  Google Scholar 

  • Mylerova V, Martinkova L (2003) Synthetic applications of nitrile converting enzymes. Curr Org Chem 7:1–17

    Google Scholar 

  • Nagasawa T, Mauger J, Yamada H (1990) A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Purification and characterization. Eur J Biochem 194:765–772

    Article  CAS  Google Scholar 

  • Nagasawa T, Takeuchi K, Yamada H (1988) Occurrence of a cobalt-induced and cobalt-containing nitrile hydratase in Rhodococcus rhodochrous J1. Biochem Biophys Res Commun 115:1008–1016

    Article  Google Scholar 

  • Rezende RP, Dias JC, Ferraz V, Linardi VR (2000) Metabolism of benzonitrile by Cryptococcus sp. UFMG-Y28. J Basic Microbiol 40:389–392

    Article  CAS  Google Scholar 

  • Šnajdrová R, Mylerová KV, Crestia D, Nikolaou K, Kuzma M, Lemaire M, Gallienne E, Bolte J, Bezouška K, Kˇren V, Martínková L (2004) Nitrile biotransformation by Aspergillus niger. J Mol Catal B Enzym 29:227–232

    Article  Google Scholar 

  • Tauber MM, Cavaco-Paulo A, Robra KH, Gubitz GM (2000) Nitrile hydratase and amidase from Rhodococcus rhodochrous hydrolyze acrylic fibers and granular polyacrylonitriles. Appl Environ Microbiol 66:1634–1638

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Vaughan PA, Cheetham PJ, Knowles CJ (1988) The utilization of pyridine carbonitriles and carboxamides by Nocardia rhodochrous LL100–21. J Gen Microbiol 134:1099–1107

    CAS  Google Scholar 

  • Wilson K (1997) Preparation of genomic DNA from bacteria. In: Ausubel FM, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 241–24

    Google Scholar 

  • Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60:1391–1400

    Article  CAS  Google Scholar 

  • Yamamoto K, Fujimatsu I, Komatsu K (1992) Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC 8750 responsible for enantioselective hydrolysis of mandelonitrile. J Ferment Bioeng 73:425–430

    Article  CAS  Google Scholar 

  • Yamamoto K, Komatsu K (1991) Purification and characterization of nitrilase responsible for the enantioselective hydrolysis from Acinetobacter sp. AK 226. Agric Biol Chem 55:1459–1466

    CAS  PubMed  Google Scholar 

  • Zheng RC, Wang YS, Liu ZQ, Xing LY, Zheng YG, Shen YC (2007a) Isolation and characterization of Delftia tsuruhatensis ZJB-05174, capable of R-enantioselective degradation of 2, 2-dimethylcyclopropanecarboxamide. Res Microbiol 158:258–264

    Article  CAS  Google Scholar 

  • Zheng RC, Zheng YG, Shen YC (2007b) A screening system for active and enantioselective amidase based on its acyl transfer activity. Appl Microbiol Biotechnol 74:256–262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciated the help of Dr. Yin Li of North Dakota State University, USA, and Dr. Peter Baker and Dr. David Feder of Polytechnic University, USA, for their kindness in editing our manuscript. This work was supported by the Major Basic Research Development Program of China (973 Program; No. 2003CB716005) and the National High Technology Research and Development Program of China (863 Program; No. 2006AA02Z241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, YG., Chen, J., Liu, ZQ. et al. Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl Microbiol Biotechnol 77, 985–993 (2008). https://doi.org/10.1007/s00253-007-1236-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1236-x

Keywords

Navigation