Skip to main content

Advertisement

Log in

Copper resistance of biofilm cells of the plant pathogen Xylella fastidiosa

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Xylella fastidiosa is a phytopathogen that causes diseases in different plant species. The development of disease symptoms is associated to the blockage of the xylem vessels caused by biofilm formation. In this study, we evaluated the sensitivity of biofilm and planktonic cells to copper, one of the most important antimicrobial agents used in agriculture. We measured the exopolysaccharides (EPS) content in biofilm and planktonic cells and used real-time reverse transcription polymerase chain reaction to evaluate the expression of the genes encoding proteins involved in cation/multidrug extrusion (acrA/B, mexE/czcA, and metI) and others associated with different copper resistance mechanisms (copB, cutA1, cutA2, and cutC) in the X. fastidiosa biofilm formed in two different media. We confirmed that biofilms are less susceptible to copper than planktonic cells. The amount of EPS seems to be directly related to the resistance and it varies according to the media where the cells are grown. The same was observed for gene expression. Nevertheless, some genes seem to have a greater importance in biofilm cells resistance to copper. Our results suggest a synergistic effect between diffusion barriers and other mechanisms associated with bacterial resistance in this phytopathogen. These mechanisms are important for a bacterium that is constantly under stress conditions in the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brooun A, Liu S, Lewis K (2000) A dose–response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44:640–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang G (2003) Multidrug resistance ABC transporters. FEBS Lett 27:102–105

    Article  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber D, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  • Dameron CT, Harrison MD (1998) Mechanisms for protection against copper toxicity. Am J Clin Nutr 67:1091S–1097S

    Article  CAS  PubMed  Google Scholar 

  • Davis MJ, French WJ, Schaad NW (1981) Axenic culture of the bacteria associated with phony disease of peach and plum scald. Curr Microbiol 5:311–316

    Article  Google Scholar 

  • De Souza AA, Takita MA, Coletta-Filho HD, Caldana C, Goldman GH, Yanai GM, Muto NH, Costa de Oliveira R, Nunes LR, Machado MA (2003) Analysis of gene expression in two growth states of Xylella fastidiosa and its relationship with pathogenicity. Mol Plant Microb Interact 16:867–875

    Article  Google Scholar 

  • De Souza AA, Takita MA, Coletta-Filho HD, Caldana C, Yanai GM, Muto NH, Costa De Oliveira R, Nunes LR, Machado MA (2004) Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro. FEMS Microbiol Lett 237:341–353

    Article  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–354

    Article  CAS  Google Scholar 

  • Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2:e135

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes WB Jr (2003) Analysis of the world processed orange industry. Ph.D. thesis. University of Florida, Gainesville, FL, p 108

  • Harrison JJ, Rabiei M, Turner RJ, Badry EA, Sproule KM, Ceri H (2006) Metal resistance in Candida biofilmes. FEMS Microbiol Ecol 3:479–491

    Article  Google Scholar 

  • Lemos EG, Alves LM, Campanharo JC (2003) Genomics-based design of defined growth media for the plant pathogen Xylella fastidiosa. FEMS Microbiol Lett 219:39–45

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 22DDCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  CAS  PubMed  Google Scholar 

  • Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA (2003) Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71:4333–4340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  PubMed  Google Scholar 

  • Ordermatt A, Krapf R, Solioz M (1994) Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2, and Ag+ extrusion by CopB. Biochem Biophys Res Commun 202:44–48

    Article  Google Scholar 

  • Osiro D, Colnago LA, Otoboni AMMB, Lemos EGM, Souza AA, Coletta-Filho HD, Machado MA (2004) A kinetic model for Xylella fastidiosa adhesion, biofilm formation, and virulence. FEMS Microbiol Lett 236:313–318

    Article  CAS  PubMed  Google Scholar 

  • Pattery T, Hernalsteens JP, De Greve H (1999) Identification and molecular characterization of a novel Salmonella enteritidis pathogenicity islet encoding an ABC transporter. Mol Microbiol 33:791–805

    Article  CAS  PubMed  Google Scholar 

  • Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 3:255–264

    CAS  PubMed  Google Scholar 

  • Poole K (2002) Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 92:55S–64S

    Article  PubMed  Google Scholar 

  • Poole K (2004) Efflux-mediated multiresistance in gram-negative bacteria. Clin Microbiol Infect 10:12–26

    Article  CAS  PubMed  Google Scholar 

  • Ramage G, Bachmann S, Patterson TF, Wickes BL, Lopez-Ribot JL (2002) Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49:973–980

    Article  CAS  PubMed  Google Scholar 

  • Ravirala RS, Barabot RD, Wheeler DM, Reverchon S, Tatum O, Malouf J, Liu H, Pritchard L, Hedley PE, Birch PRJ, Toth IK, Payton P, San Francisco MJD (2007) Efflux pump gene expression in Erwinia chrysanthemi is induced by exposure to phenolic acids. Mol Plant Microbe Interact 20:313–320

    Article  CAS  PubMed  Google Scholar 

  • Reddy JD, Reddy SL, Hopkins DL, Gabriel DW (2007) TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines. Mol Plant Microbe Interact 20:403–410

    Article  CAS  PubMed  Google Scholar 

  • Rouch D, Camakaris J, Lee BTO (1989) Copper transport in E. coli. In: Hamer DH, Winge DR (eds) Metal ion homeostasis: molecular biology and chemistry. Liss, New York, pp 469–477

    Google Scholar 

  • Rouch DA, Brown NL (1997) Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. Microbiology 143:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Saier Jr. MH, Tam, R, Reizer, A, Reizer, J (1994) Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. J Mol Microbiol Biotechnol 11:841–847

    CAS  Google Scholar 

  • Schaad NW, Postnikova E, Lact G, Fatmi M, Chang CJ (2004) Xylella fastidiosa subspecies: X. fastidiosa subsp piercei, subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Syst Appl Microbiol 27:290–300

    Article  CAS  PubMed  Google Scholar 

  • Simpson AJG, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, Alves LMC, Araya JE, Baia GS, Baptista CS, Barros MH, Bonaccorsi ED, Bordin S, Bové JM, Briones MRS, Bueno MRP, Camargo AA, Camargo LEA, Carraro DM, Carrer H, Colauto NB, Colombo C, Costa FF, Costa MCR, Costa-Neto CM, Coutinho LL, Cristofani M, Dias-Neto E, Docena C, El-Dorry H, Facincani AP, Ferreira AJS, Ferreira VCA, Ferro JA, Fraga JS, França SC, Franco MC, Frohme M, Furlan LR, Garnier M, Goldman GH, Goldman MHS, Gomes SL, Gruber A, Ho PL, Hoheisel JD, Junqueira ML, Kemper EL, Kitajima JP, Krieger JE, Kuramae EE, Laigret F, Lambais MR, Leite LCC, Lemos EGM, Lemos MVF, Lopes SA, Lopes CR, Machado JA, Machado MA, Madeira AMBN, Madeira HMF, Marino CL, Marques MV, Martins EAL, Martins EMF, Matsukuma AY, Menck CFM, Miracca EC, Miyaki CY, Monteiro-Vitorello CB, Moon DH, Nagai MA, Nascimento ALTO, Netto LES, Nhani Jr, A, Nobrega FG, Nunes LR, Oliveira MA, De Oliveira MC, De Oliveira RC, Palmieri DA, Paris A, Peixoto BR, Pereira GAG, Pereira Jr HA, Pesquero JB, Quaggio RB, Roberto PG, Rodrigues V, Rosa AJ De M, De Rosa Jr, VE, De Sá RG, Santelli RV, Sawasaki HE, Da Silva ACR, Da Silva AM, Da Silva FR, Silva Jr, WA, Da Silveira JF, Silvestri MLZ, Siqueira WJ, De Souza AA, De Souza AP, Terenzi MF, Truffi D, Tsai SM, Tsuhako MH, Vallada H, Van Sluys MA, Verjovski-Almeida S, Vettore AL, Zago MA, Zatz M, Meidanis J, Setubal JC (2000) The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa consortium of the Organization for Nucleotide Sequencing and Analysis. Nature 40:151–159

    Article  Google Scholar 

  • Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surdeau N, Laurent-Maquin D, Bouthors S, Gelle MP (2006) Sensitivity of bacterial biofilms and planktonic cells to a new antimicrobial agent, Oxsil 320N. J Hosp Infect 62:487–493

    Article  CAS  PubMed  Google Scholar 

  • Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voloudakis AE, Reignier TM, Cooksey DA (2005) Regulation of Resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Appl Environ Microbiol 71:782–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Lopez CR, Zechiedrich EL (2006) Quorum sensing and multidrug transporters in Escherichia coli. Proc Natl Acad Sci U S A 103:2386–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP: 04/14576-2) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq: 094167-2005-2). M.A.T., H.D.C-F., M.A.M., and A.A.S. are recipients of a research fellowship from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra A. de Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, C.M., Takita, M.A., Coletta-Filho, H.D. et al. Copper resistance of biofilm cells of the plant pathogen Xylella fastidiosa . Appl Microbiol Biotechnol 77, 1145–1157 (2008). https://doi.org/10.1007/s00253-007-1232-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1232-1

Keywords

Navigation