Skip to main content

Advertisement

Log in

Design of a serine protease-like catalytic triad on an antibody light chain displayed on the yeast cell surface

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lc-WT, the wild-type light chain of antibody, and Lc-Triad, its double mutant with E1D and T27aS designing for the construction of catalytic triad within Asp1, Ser27a, and original His93 residues, were displayed on the cell surface of the protease-deficient yeast strain BJ2168. When each cell suspension was reacted with BODIPY FL casein and seven kinds of peptide-MCA substrates, respectively, a remarkable difference in hydrolytic activities toward Suc-GPLGP-MCA (succinyl-Gly-Pro-Leu-Gly-Pro-MCA), a substrate toward collagenase-like peptidase, was observed between the constructs: Lc-Triad-displaying cells showed higher catalytic activity than Lc-WT-displaying cells. The difference disappeared in the presence of the serine protease inhibitor diisopropylfluorophosphate, suggesting that the three amino acid residues, Ser27a, His93, and Asp1, functioned as a catalytic triad responsible for the proteolytic activity in a similar way to the anti-vasoactive intestinal peptide (VIP) antibody light chain. A serine protease-like catalytic triad (Ser, His, and Asp) is considered to be directly involved in the catalytic mechanism of the anti-VIP antibody light chain, which moderately catalyzes the hydrolysis of VIP. These results suggest the possibility of new approach for the creation of tailor-made proteases beyond limitations of the traditional immunization approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Arkin MR, Wells JA (1998) Probing the importance of second sphere residues in an esterolytic antibody by phage display. J Mol Biol 284:1083–1094

    Article  CAS  Google Scholar 

  • Baldwin E, Schultz PG (1989) Generation of a catalytic antibody by site-directed mutagenesis. Science 245:1104–1107

    Article  CAS  Google Scholar 

  • Braman J, Papworth C, Greener A (1996) Site-directed mutagenesis using double-stranded plasmid DNA templates. Methods Mol Biol 57:31–44

    CAS  PubMed  Google Scholar 

  • Bryan P, Pantoliano MW, Quill SG, Hsiao HY, Poulos T (1986) Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc Natl Acad Sci USA 83:3743–3745

    Article  CAS  Google Scholar 

  • Fletcher MC, Kuderova A, Cygler M, Lee JS (1998) Creation of a ribonuclease abzyme through site-directed mutagenesis. Nat Biotechnol 16:1065–1067

    Article  CAS  Google Scholar 

  • Frey J, Rohm KH (1979) External and internal forms of yeast aminopeptidase II. Eur J Biochem 97:169–173

    Article  CAS  Google Scholar 

  • Fujita Y, Takahashi S, Ueda M, Kondo A (2002) Directed and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141

    Article  CAS  Google Scholar 

  • Gao QS, Sun M, Tyutyulkova S, Paul S (1994) Molecular cloning of a proteolytic antibody light chain. J Biol Chem 269:32389–32393

    CAS  PubMed  Google Scholar 

  • Gao QS, Sun M, Rees AR, Paul S (1995) Site-directed mutagenesis of proteolytic antibody light chain. J Mol Biol 253:658–664

    Article  CAS  Google Scholar 

  • Gololobov G, Sun M, Paul S (1999) Innate antibody catalysis. Mol Immunol 36:1215–1222

    Article  CAS  Google Scholar 

  • Hatiuchi K, Hifumi E, Mitsuda Y, Uda T (2003) Endopeptidase character of monoclonal antibody i41-7 subunits. Immunol Lett 86:249–257

    Article  CAS  Google Scholar 

  • Hifumi E, Okamoto Y, Uda T (1999) Super catalytic antibody [I]: decomposition of targeted protein by its antibody light chain. J Biosci Bioeng 88:323–327

    Article  CAS  Google Scholar 

  • Hifumi E, Mitsuda Y, Ohara K, Uda T (2002) Targeted destruction of the HIV-1 coat protein gp41 by a catalytic antibody light chain. J Immunol Methods 269:283–298

    Article  CAS  Google Scholar 

  • Hifumi E, Kondo H, Mitsuda Y, Uda T (2003) Catalytic features of monoclonal antibody i41SL1-2 subunits. Biotechnol Bioeng 84:485–493

    Article  CAS  Google Scholar 

  • Jackson DY, Prudent JR, Baldwin EP, Schultz PG (1991) A mutagenesis study of a catalytic antibody. Proc Natl Acad Sci USA 88:58–62

    Article  CAS  Google Scholar 

  • Jones EW (1991) Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol 194:428–453

    Article  CAS  Google Scholar 

  • Kalaga R, Li L, O’Dell JR, Paul S (1995) Unexpected presence of polyreactive catalytic antibodies in IgG from unimmunized donors and decreased levels in rheumatoid arthritis. J Immunol 155:2695–2702

    CAS  PubMed  Google Scholar 

  • Kato M, Kuzuhara Y, Maeda H, Shiraga S, Ueda M (2006) Analysis of a processing system for proteases using yeast cell surface engineering: conversion of precursor of proteinase A to active proteinase A. Appl Microbiol Biotechnol 72:1229–1237

    Article  CAS  Google Scholar 

  • Lin Y, Tsumuraya T, Wakabayashi T, Shiraga S, Fujii I, Kondo A, Ueda M (2003) Display of a functional hetero-oligomeric catalytic antibody on the yeast cell surface. Appl Microbiol Biothechnol 62:226–232

    Article  CAS  Google Scholar 

  • Lin Y, Shiraga S, Tsumuraya T, Ueda M (2004) Isolation of novel catalytic antibody clones from combinatorial library displayed on yeast-cell surface. J Mol Catal B 28:247–251

    Article  CAS  Google Scholar 

  • Mitsuda Y, Hifumi E, Tsuruhata K, Uda T (2003) Catalytic antibody light chain capable of cleaving a chemokine receptor CCR-5 peptide with a high reaction rate constant. Biotechnol Bioeng 86:217–225

    Article  Google Scholar 

  • Paul S, Volle DJ, Beach CM, Massey RJ (1989) Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody. Science 244:1158–1162

    Article  CAS  Google Scholar 

  • Paul S, Sun M, Mody R, Tewary HK, Stemmer P, Massey RJ, Gianferrara T, Mehrotra S, Dreyer T, Meldal M, Tramontano A (1992) Peptidolytic monoclonal antibody elicited by a neuropeptide. J Biol Chem 267:13142–13145

    CAS  PubMed  Google Scholar 

  • Paul S, Li L, Kalaga R, Wilkins-Stevens P, Stevens FJ, Solomon A (1995) Natural catalytic antibodies: peptide-hydrolyzing activities of Bence Jones proteins and VL fragment. J Biol Chem 270:15257–15261

    Article  CAS  Google Scholar 

  • Paul S, Tramontano A, Gololobov G, Zhou YX, Taguchi H, Karle S, Nishiyama Y, Planque S, George S (2001) Phosphonate ester probes for proteolytic antibodies. J Biol Chem 276:28314–28320

    Article  CAS  Google Scholar 

  • Paul S, Planque S, Zhou YX, Taguchi H, Bhatia G, Karle S, Hanson C, Nishiyama Y (2003) Specific HIV gp120-cleaving antibodies induced by covalently reactive analog of gp120. J Biol Chem 278:20429–20435

    Article  CAS  Google Scholar 

  • Paul S, Karle S, Planque S, Taguchi H, Salas M, Nishiyama Y, Handy B, Hunter R, Edmundson A, Hanson C (2004) Naturally occurring proteolytic antibodies: selective immunoglobulin M-catalyzed hydrolysis of HIV gp120. J Biol Chem 279:39611–39619

    Article  CAS  Google Scholar 

  • Pillet D, Paon M, Vorobiev II, Gabibov AG, Thomas D, Friboulet A (2002) Idiotypic network mimicry and antibody catalysis: lessons for the elicitation of efficient anti-idiotypic protease antibodies. J Immunol Methods 269:5–12

    Article  CAS  Google Scholar 

  • Planque S, Taguchi H, Burr G, Paul S (2003) Broadly distributed chemical reactivity of natural antibodies expressed in coordination with specific antigen binding activity. J Biol Chem 278:20436–20443

    Article  CAS  Google Scholar 

  • Planque S, Bangale Y, Song XT, Paul S (2004) Ontogeny of proteolytic immunity. J Biol Chem 279:14024–14032

    Article  CAS  Google Scholar 

  • Saheki T, Holzer H (1975) Proteolytic activities in yeast. Biochim Biophys Acta 384:203–214

    Article  CAS  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, Mody B, Eklund SH, Paul S (1991) Vasoactive intestinal peptide hydrolysis by antibody light chains. J Biol Chem 266:15571–15574

    Google Scholar 

  • Sun M, Gao QS, Li L, Paul S (1994) Proteolytic activity of an antibody light chain. J Immunol 153:5121–5126

    CAS  PubMed  Google Scholar 

  • Sun M, Gao QS, Kirnarskiy L, Paul S (1997) Cleavage specificity of a proteolytic antibody light chain and effects of the heavy chain variable domain. J Mol Biol 271:374–385

    Article  CAS  Google Scholar 

  • Tajima M, Nogi Y, Fukasawa T (1985) Primary structure of the Saccharomyces cerevisiae GAL7 gene. Yeast 1:67–77

    Article  CAS  Google Scholar 

  • Takahashi N, Kakinuma H, Liu L, Fujii I (2001) In vitro abzyme evolution to optimize antibody recognition for catalysis. Nat Biotechnol 19:563–567

    Article  CAS  Google Scholar 

  • Tyutyulkova S, Paul S (1994) Selection of functional human immunoglobulin light chains from a phage-display library. Appl Biochem Biotechnol 47:191–197

    Article  CAS  Google Scholar 

  • Tyutyulkova S, Gao QS, Thompson A, Rennard S, Paul S (1996) Efficient vasoactive intestinal polypeptide hydrolyzing autoantibody light chains selected by phage display. Biochim Biophys Acta 1316:217–223

    Article  Google Scholar 

Download references

Acknowledgment

The DNA encoding the 6D9 light chain gene was donated by Prof. I. Fujii, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okochi, N., Kato-Murai, M., Kadonosono, T. et al. Design of a serine protease-like catalytic triad on an antibody light chain displayed on the yeast cell surface. Appl Microbiol Biotechnol 77, 597–603 (2007). https://doi.org/10.1007/s00253-007-1197-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1197-0

Keywords