Applied Microbiology and Biotechnology

, Volume 76, Issue 3, pp 533–543 | Cite as

Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation

  • Anders R. JohnsenEmail author
  • Ulrich Karlson


The purpose of this review is to recognize the scientific and environmental importance of diffuse pollution with polycyclic aromatic hydrocarbons (PAHs). Diffuse PAH pollution of surface soil is characterized by large area extents, low PAH concentrations, and the lack of point sources. Urban and pristine topsoils receive a continuous input of pyrogenic PAHs, which induces a microbial potential for PAH degradation. The significance of this potential in relation to black carbon particles, PAH bioaccessibility, microbial PAH degradation, and the fate of diffuse PAHs in soil is discussed. Finally, the state-of-the-art methods for future investigations of the microbial degradation of diffuse PAH pollution are reviewed.


Polycyclic aromatic hydrocarbon (PAH) Diffuse pollution Soil Bioaccessibility Biodegradation Black carbon 



This work was supported financially by the Villum Kann Rasmussen Foundation (CREAM project; A. R. J.) and the European Commission (BIOTOOL project, contract GOCE 003998; U. K.).


  1. Alexander M (1995) How toxic are toxic chemicals in soil? Environ Sci Technol 29:2713–2717CrossRefGoogle Scholar
  2. Allan IJ, Semple KT, Hare R, Reid BJ (2006) Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environ Pollut 144:562–571CrossRefGoogle Scholar
  3. Baldwin BR, Nakatsu CH, Nies L (2003) Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microbiol 69:3350–3358CrossRefGoogle Scholar
  4. Bosma TNP, Middeldorp PJM, Schraa G, Zender AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252CrossRefGoogle Scholar
  5. Carrera G, Fernandez P, Vilanova RM, Grimalt JO (2001) Persistent organic pollutants in snow from European high mountain areas. Atmos Environ 35:245–254CrossRefGoogle Scholar
  6. Christensen JH, Hansen AB, Karlson U, Mortensen J, Andersen O (2005) Multivariate statistical methods for evaluating biodegradation of mineral oil. J Chromatogr A 1090:133–145CrossRefGoogle Scholar
  7. Cornelissen G, Gustafsson Ö (2006) Effects of added PAHs and precipitated humic acid coatings on phenanthrene sorption to environmental black carbon. Environ Pollut 141:526–531CrossRefGoogle Scholar
  8. Cornelissen G, Elmquist M, Groth I, Gustafsson Ö (2004) Effect of sorbate planarity on environmental black carbon sorption. Environ Sci Technol 38:3574–3580CrossRefGoogle Scholar
  9. Cornelissen G, Gustafsson Ö, Bucheli TD, Jonker MTO, Koelmans AA, Van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39:6881–6895CrossRefGoogle Scholar
  10. Cuypers C, Pancras T, Grotenhuis T, Rulkens W (2002) The estimation of PAH-bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46:1235–1245CrossRefGoogle Scholar
  11. Daane LL, Harijono I, Zylstra GJ, Häggblom MM (2001) Isolation and characterization of polycyclic aromatic hydrocarbon degrading bacteria associated with the rhizospere of salt march plants. Appl Environ Microbiol 67:2683–2691CrossRefGoogle Scholar
  12. Dachs J, Eisenreich SJ (2000) Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 34:3690–3697CrossRefGoogle Scholar
  13. Doick KJ, Dew NM, Semple KT (2005) Liking catabolism to cyclodextrin extractability: determination of the microbial availability of PAHs in soil. Environ Sci Technol 39:8858–8864CrossRefGoogle Scholar
  14. Doick KJ, Clasper PJ, Urmann K, Semple KT (2006) Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil. Environ Pollut 144:345–354CrossRefGoogle Scholar
  15. Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39:6896–6916CrossRefGoogle Scholar
  16. Embedslægeinstitutionen (for Københavns og Frederiksberg Kommuner) (2002) Jordforurening og sundhedsrisiko. Beskrivelse af den sundhedsmæssige betydning af jordforurening med bly og benz[a]pyren i Københavns og Frederiksberg kommuner. Embedslægeinstitutionen for Frederiksborg Amt, CopenhagenGoogle Scholar
  17. Fernandez P, Vilanova RM, Martinez C, Appleby P, Grimalt JO (2000) The historical record of atmospheric pyrolytic pollution over Europe registered in the sedimentary PAH from remote mountain lakes. Environ Sci Technol 34:1906–1913CrossRefGoogle Scholar
  18. Fine PM, Cass GR, Simoneit BRT (2002) Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the southern United States. Environ Sci Technol 36:1442–1451CrossRefGoogle Scholar
  19. Garcia-Granados A, Lopez PE, Melguizo E, Parra A, Simeo Y (2004) Oxidation of several triterpenic diene and triene systems. Oxidative cleavage to obtain chiral intermediates for drimane and phenanthrene semi-synthesis. Tetrahedron 60:3831–3845CrossRefGoogle Scholar
  20. Geyer R, Peacock AD, Miltner A, Richnow HH, White DC, Sublette K, Kästner M (2005) In situ assessment of biodegradation potential using biotraps amended with C-13-labeled benzene or toluene. Environ Sci Technol 39:4983–4989CrossRefGoogle Scholar
  21. Glasius M, Konggård P, Stubkjær J, Bossi R, Hertel O, Ketzel M, Wåhlin P, Schleicher O, Palmgren F (2007) Partikler og organiske forbindelser fra træfyring-nye undersøgelser af udslip og koncentrationer. Arbejdsrapport fra DMU, nr. 235. National Environmental Research Institute, Aarhus University, Roskilde, DenmarkGoogle Scholar
  22. Gocht T, Ligouis B, Hindere M, Grathwohl P (2007) Accumulation of polycyclic aromatic hydrocarbons in rural soils based on mass balances at the catchment scale. Environ Toxicol Chem 26:591–600CrossRefGoogle Scholar
  23. Grimalt J, van Drooge B, Ribes R, Fernández P, Appleby P (2004) Polycyclic aromatic hydrocarbon composition in soils and sediments of high altitude lakes. Environ Pollut 131:13–24CrossRefGoogle Scholar
  24. Grøn C, Asmussen OW, Samsøe-Petersen L (2006) Test for human bioopløselighed af forureninger. Miljøprojekt nr. 1088. Danish Environmental Protection Agency, Ministry of the Environment, CopenhagenGoogle Scholar
  25. Harkov R, Greenberg A (1985) Benzo[a]pyrene in New Jersey—results from a twenty-seven-site study. J Air Pollut Control Assoc 35:238–243Google Scholar
  26. Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol 18:97–105CrossRefGoogle Scholar
  27. Holoubek I, Korinek P, Seda Z, Schneiderova E, Holoubkova I, Pacl A, Triska J, Cudlin P, Caslavsky J (2000) The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ Pollut 109:283–292CrossRefGoogle Scholar
  28. Howsam M, Jones KC, Ineson P (2001) Dynamics of PAH-deposition, cycling and storage in a mixed, deciduous (Quercus–Fraxinus) woodland ecosystem. Environ Pollut 113:163–176CrossRefGoogle Scholar
  29. Illerup JB, Nielsen O-K, Winther M, Mikkelsen MH, Hoffmann L, Gyldenkærne S, Fauser P, Nielsen M (2006) Annual Danish emissions inventory report to UNECE. Inventories from the base year of the protocol to year 2004. NERI Technical Report No. 604. National Environmental Research Institute, Ministry of the Environment, Roskilde, DenmarkGoogle Scholar
  30. Jensen H, Reimann C, Finne TE, Ottesen RT, Arnoldussen A (2007) PAH-concentrations and composition in the top 2 cm of forest soil along a 120 km long transect through agricultural areas, forests and the city of Oslo, Norway. Environ Pollut 145:829–838CrossRefGoogle Scholar
  31. Jessup RE, Ou LT, Rao PSC (1985) Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy)acetic acid in soils. Appl Environ Microbiol 49:582–587Google Scholar
  32. Johnsen AR, Karlson U (2004) Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs) Appl Microbiol Biotechnol 63:452–459CrossRefGoogle Scholar
  33. Johnsen AR, Karlson U (2005) PAH degradation capacity of soil microbial communities—does it depend on exposure? Microb Ecol 50:488–494CrossRefGoogle Scholar
  34. Johnsen AR, Bendixen K, Karlson U (2002) Detection of microbial growth on PAHs in microtiter plates using the respiration indicator WST-1. Appl Environ Microbiol 68:3487–3491Google Scholar
  35. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84CrossRefGoogle Scholar
  36. Johnsen AR, de Lipthay JR, Sørensen SJ, Ekelund F, Christensen P, Andersen O, Karlson U, Jacobsen CS (2006a) Microbial degradation of street dust PAHs in microcosms simulating diffuse pollution of urban soil. Environ Microbiol 8:535–545CrossRefGoogle Scholar
  37. Johnsen AR, de Lipthay JR, Reichenberg F, Sørensen SJ, Andersen O, Christensen P, Binderup M L, Jacobsen CS (2006b) Biodegradation, bioaccessibility and genotoxicity of diffuse polycyclic aromatic hydrocarbon (PAH) pollution at a motorway site. Environ Sci Technol 40:3293–3298CrossRefGoogle Scholar
  38. Johnsen AR, Schmidt S, Hybholt TK, Henriksen S, Jacobsen CS, Andersen O (2007) Strong impact on the polycyclic aromatic hydrocarbon-degrading community of a PAH-polluted soil but marginal effect on PAH-degradation potential. Appl Environ Microbiol 73:1474–1480CrossRefGoogle Scholar
  39. Jones KC, Stratford JA, Waterhouse KS, Furlong ET, Goger W, Hites RA, Schaffner C, Johnston AE (1989) Increases in the polynuclear aromatic hydrocarbon content of an agricultural soil over the last century. Environ Sci Technol 23:95–101CrossRefGoogle Scholar
  40. Jonker MTO, Hawthorne SB, Koelmans AA (2005) Extremely slowly desorbing polycyclic aromatic hydrocarbons from soot and soot-like materials: evidence by supercritical fluid extraction. Environ Sci Technol 39:7889–7895CrossRefGoogle Scholar
  41. Kästner M, Fischer A, Nijenhuis L, Geyer R, Stelzer N, Bombach P, Tebbe CC, Richnow HH (2006) Assessment of microbial in situ activity in contaminated aquifers. Eng Life Sci 6:234–251CrossRefGoogle Scholar
  42. Khan AA, Wang RF, Cao WW, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp strain PYR-1. Appl Environ Microbiol 67:3577–3585CrossRefGoogle Scholar
  43. Kiyohara H, Torigoe S, Kaida N, Asaki T, Iida T, Hayashi H, Takizawa N (1994) Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. Appl Environ Microbiol 176:2439–2443Google Scholar
  44. Kleinedam S, Rügner H, Ligouis B, Grathwohl P (1999) Organic matter facies and equilibrium sorption of phenanthrene. Environ Sci Technol 33:1637–1644CrossRefGoogle Scholar
  45. Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp strain 6PY1: Evidence for two ring-hydroxylating dioxygenases. J Bacteriol 185:3828–3841CrossRefGoogle Scholar
  46. Kulakov LA, Chen SC, Allen CCR, Larkin MJ (2005) Web-type evolution of Rhodococcus gene clusters associated with utilization of naphthalene. Appl Environ Microbiol 71:1754–1764CrossRefGoogle Scholar
  47. Laurie AD, Lloyd-Jones G (1999) The phn genes of Burkholderia sp strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181:531–540Google Scholar
  48. Leys NM, Ryngaert A, Bastiaens L, Wattiau P, Top EM, Verstraete W, Springael D (2005) Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 51:375–388CrossRefGoogle Scholar
  49. Lima ALC, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment. Environ Forensics 6:109–131CrossRefGoogle Scholar
  50. Lin H, Tao S, Zuo Q, Coveney RM (2007) Uptake of polycyclic aromatic hydrocarbons by maize plants. Environ Pollut 148:614–619CrossRefGoogle Scholar
  51. Lindhart B, Holst H, Christensen TH (1994) Comparison of soxhlet and shake extraction of polycyclic aromatic hydrocarbons from coal tar polluted soils sampled in the field. Int J Environ Anal Chem 57:9–19CrossRefGoogle Scholar
  52. Lloyd-Jones G, Laurie AD, Hunter DWF, Fraser R (1999) Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils. FEMS Microbiol Ecol 29:69–79CrossRefGoogle Scholar
  53. Macleod CJA, Semple KT (2002) The adaptation of two similar soils to pyrene catabolism. Environ Pollut 119:357–364CrossRefGoogle Scholar
  54. Mandalakis M, Gustafsson O, Alsberg T, Egeback AL, Reddy CM, Xu L, Klanova J, Holoubek I, Stephanou EG (2005) Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites. Environ Sci Technol 39:2976–2982CrossRefGoogle Scholar
  55. Masclet P, Hoyau V, Jaffrezo JL, Cachier H (2000) Polycyclic aromatic hydrocarbon deposition on the ice sheet of Greenland Part 1: superficial snow. Atmos Environ 34:3195–3207CrossRefGoogle Scholar
  56. Mathis U, Mohr M, Kaegi R, Bertola A, Boulouchos K (2005) Influence of diesel engine combustion parameters on primary soot particle diameter. Environ Sci Technol 39:1887–1892CrossRefGoogle Scholar
  57. Mayer P, Karlson U, Christensen PS, Johnsen AR, Trapp S (2005) Quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through unstirred boundary layers. Environ Sci Technol 39:6123–6129CrossRefGoogle Scholar
  58. Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. J Contam Hydrol 75:215–255CrossRefGoogle Scholar
  59. Miller CD, Hall K, Liang YN, Nieman K, Sorensen D, Issa B, Anderson AJ, Sims RC (2004) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates from soil. Microb Ecol 48:230–238CrossRefGoogle Scholar
  60. Moser R, Stahl U (2001) Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Appl Microbiol Biotechnol 55:609–618CrossRefGoogle Scholar
  61. Muri G, Wakeham SG, Faganeli J (2003) Polycyclic aromatic hydrocarbons and black carbon in sediments of a remote alpine lake (Lake Planina, northwest Slovenia). Environ Toxicol Chem 22:1009–1016CrossRefGoogle Scholar
  62. Neff JM (1979) Biosynthesis of PAH. In: Polycyclic aromatic hydrocarbons in the aquatic environment. Applied Science, Essex, pp 8–16Google Scholar
  63. Nielsen M, Illerup JB (2006) Danish emission inventories for stationary combustion plants. Research notes from NERI No. 229. National Environmental Research Institute, Ministry of the Environment, Roskilde, DenmarkGoogle Scholar
  64. Nyyssönnen M, Piskonen R, Itävaara M (2006) A targeted real time PCR assay for studying naphthalene degradation in the environment. Microb Ecol 52:533–543CrossRefGoogle Scholar
  65. Park J-W, Crowley DE (2006) Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH contaminated soils. Appl Microbiol Biotechnol 72:1322–1329CrossRefGoogle Scholar
  66. Patterson CJ, Semple KT, Paton GI (2004) Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralisation in soil. FEMS Microbiol Lett 241:215–220CrossRefGoogle Scholar
  67. Prevedouros K, Brorström-Lundén E, Halsall CJ, Jones KC, Lee RGM, Sweetman AJ (2004) Seasonal and long-term trends in atmospheric PAH concentrations: evidence and implications. Environ Pollut 128:17–27CrossRefGoogle Scholar
  68. Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25:1239–1245CrossRefGoogle Scholar
  69. Reid BJ, Jones KC, Semple KT (2000a) Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112CrossRefGoogle Scholar
  70. Reid BJ, Stokes JD, Jones KC, Semple KT (2000b) Nonexhaustive dextrin-based extraction technique for the evaluation of PAH-bioavailability. Environ Sci Technol 34:3174–3179CrossRefGoogle Scholar
  71. Reid BJ, Stokes JD, Jones KC, Semple KT (2004) Influence of hydroxypropyl-β-cyclodextrin on the extraction and biodegradation of phenanthrene in soil. Environ Toxicol Chem 23:550–556CrossRefGoogle Scholar
  72. Rijnaarts HHM, Bachmann A, Jumelet JC, Zehnder AJB (1990) Effect of desorption and intraparticle mass-transfer on the aerobic biomineralization of alpha-hexachlorocyclohexane in a contaminated calcareous soil. Environ Sci Technol 24:1349–1354CrossRefGoogle Scholar
  73. Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1993a) Sources of fine organic aerosol 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ Sci Technol 27:636–651CrossRefGoogle Scholar
  74. Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1993b) Sources of fine organic aerosol 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environ Sci Technol 27:1892–1904CrossRefGoogle Scholar
  75. Saito A, Iwabuchi T, Harayama S (1999) Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp KP7. Chemosphere 38:1331–1337CrossRefGoogle Scholar
  76. Saito A, Iwabuchi T, Harayame S (2000) A novel phenanthrene dioxygenase from Nocardioides sp strain KP7: expression in E. coli. J Bacteriol 182:2134–2141CrossRefGoogle Scholar
  77. Sanders G, Jones KC, Hamilton-Tyler J (1995) PCB and PAH fluxes to a dated UK peat core. Environ Pollut 89:17–25CrossRefGoogle Scholar
  78. Schneider J, Weimer S, Drewnick F, Borrmann S, Helas G, Gwaze P, Schmid O, Andreae MO, Kirchner U (2006) Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles. Int J Mass Spectrom 258:37–49CrossRefGoogle Scholar
  79. Simoneit BRT, Grimalt JO, Wang TG, Cox RE, Hatcher PG, Nissenbaum A (1986) Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals. Org Geochem 10:877–889CrossRefGoogle Scholar
  80. Simonich SL, Hites RA (1994) Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere. Nature 370:49–51CrossRefGoogle Scholar
  81. Stieber M, Haeseler F, Werner P, Frimmel, FH (1994) A rapid screening method for micro-organisms degrading polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 40:753–755CrossRefGoogle Scholar
  82. Stokes JD, Wilkinson A, Reid BJ, Jones KC, Semple KT (2005) Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-β-cyclodextrin extraction technique. Environ Toxicol Chem 24:1325–1330CrossRefGoogle Scholar
  83. Takizawa N, Kaida N, Torigoe S, Moritani T, Sawada T, Satoh S, Kiyohara H (1994) Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J Bacteriol 176:2444–2449Google Scholar
  84. Tan YL, Kong A, Monetti MA (1996) Biogenic polycyclic aromatic hydrocarbons in an Alaskan arctic lake sediment. Polycycl Aromat Compd 9:185–192CrossRefGoogle Scholar
  85. ten Hulscher TEM, Vrind BA, van den Heuvel H, van der Velde LE, van Noort PCM, Beurskens JEM, Govers HAJ (1999) Triphasic desorption of highly resistant chlorobenzenes, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons in field contaminated sediment. Environ Sci Technol 33:126–132CrossRefGoogle Scholar
  86. Trapido M (1999) Polycyclic aromatic hydrocarbons in Estonian soil: contamination and profiles. Environ Pollut 105:67–74CrossRefGoogle Scholar
  87. van de Wiele TR, Verstraete W, Siciliano SD (2004) Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract. J Environ Qual 33:1343–1353CrossRefGoogle Scholar
  88. Vilanova RM, Fernandez P, Martinez C, Grimalt JO (2001) Polycyclic aromatic hydrocarbons in remote mountain lake waters. Water Res 35:3916–3926CrossRefGoogle Scholar
  89. Volkering F, Breure AM, Sterkenburg A, van Andel JG (1992) Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl Microbiol Biotechnol 36:548–552CrossRefGoogle Scholar
  90. Volkering F, Breure AM, van Andel JG (1993) Effect of microorganisms on the bioavailability and biodegradation of crystalline naphthalene. Appl Microbiol Biotechnol 40:535–540CrossRefGoogle Scholar
  91. Wang ZD, Fingas M, Blenkinsopp M, Sergy G, Landriault M, Sigouin L, Fogt J, Semple K, Westlake DWS (1998) Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J Chromatogr A 809:89–1107CrossRefGoogle Scholar
  92. Wang YQ, Tao S, Jiao XC, Coveney RM, Wu SP, Xing BS (2007) Polycyclic aromatic hydrocarbons in leaf cuticles and inner tissues of six species of trees in urban Beijing. Environ Pollut (in press)Google Scholar
  93. Wick LY, Springael D, Harms H (2001) Bacterial strategies to improve the bioavailability of hydrophobic organic pollutants. In: Stegmann R, Brunner G, Calmano W, Matz G (eds) Treatment of contaminated soil. Springer, Berlin, pp 203–217Google Scholar
  94. Wick LY, Ruis-de-Munain A, Springael D, Harms H (2002) Responses of Mycobacterium sp 501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385CrossRefGoogle Scholar
  95. Wild SR, Obbard JP, Minn CI, Berrow ML, Jones KC (1991) The long-term persistence of polynuclear aromatic hydrocarbons (PAHs) in an agricultural soil amended with metal contaminated sewage sludges. Sci Total Environ 101:235–253CrossRefGoogle Scholar
  96. Wild E, Dent J, Thomas GO, Jones KC (2006) Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene: further studies utilizing two-photon excitation microscopy. Environ Sci Technol 40:907–916CrossRefGoogle Scholar
  97. Winther M (2007) Danish emission inventories for road transport and other mobile sources. Research notes from NERI No. 236. National Environmental Research Institute, University of Aarhus, Roskilde, DenmarkGoogle Scholar
  98. Wornat MJ, Ledesma EB, Sandrowitch AK, Roth MJ, Dawsey SM, Qiao Y-L, Chen W (2001) Polycyclic aromatic hydrocarbons identified in soot extracts from domestic coal-burning stoves of Henan province, China. Environ Sci Technol 35:1943–1952CrossRefGoogle Scholar
  99. Wrenn BA, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number method. Can J Microbiol 42:252–258CrossRefGoogle Scholar
  100. Zhou HW, Guo CL, Wong YS, Tam NFY (2006) Genetic diversity of dioxygenase genes in polycyclic aromatic hydrocarbon degrading bacteria isolated from mangrove sediments. FEMS Microbiol Lett 262:148–157CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of GeochemistryGeological Survey of Denmark and Greenland (GEUS)Copenhagen KDenmark
  2. 2.National Environmental Research InstituteUniversity of AarhusRoskildeDenmark

Personalised recommendations