Applied Microbiology and Biotechnology

, Volume 76, Issue 3, pp 495–511 | Cite as

Metabolomics: current state and evolving methodologies and tools

  • Marco OldigesEmail author
  • Stephan Lütz
  • Simon Pflug
  • Kirsten Schroer
  • Nadine Stein
  • Christiane Wiendahl


In recent years, metabolomics developed to an accepted and valuable tool in life sciences. Substantial improvements of analytical hardware allow metabolomics to run routinely now. Data are successfully used to investigate genotype–phenotype relations of strains and mutants. Metabolomics facilitates metabolic engineering to optimise mircoorganisms for white biotechnology and spreads to the investigation of biotransformations and cell culture. Metabolomics serves not only as a source of qualitative but also quantitative data of intra-cellular metabolites essential for the model-based description of the metabolic network operating under in vivo conditions. To collect reliable metabolome data sets, culture and sampling conditions, as well as the cells’ metabolic state, are crucial. Hence, application of biochemical engineering principles and method standardisation efforts become important. Together with the other more established omics technologies, metabolomics will strengthen its claim to contribute to the detailed understanding of the in vivo function of gene products, biochemical and regulatory networks and, even more ambitious, the mathematical description and simulation of the whole cell in the systems biology approach. This knowledge will allow the construction of designer organisms for process application using biotransformation and fermentative approaches making effective use of single enzymes, whole microbial and even higher cells.


Metabolomics Metabolome Microbial LC-MS GC-MS Mass spectrometry 



The authors are indebted to Prof. Dr. C. Wandrey for ongoing support and fruitful discussions.


  1. Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe DB (2002) Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. Omics 6:217–234Google Scholar
  2. Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–696Google Scholar
  3. Altamirano C, Cairo JJ, Godia F (2001) Decoupling cell growth and product formation in Chinese hamster ovary cells through metabolic control. Biotechnol Bioeng 76:351–360Google Scholar
  4. Altamirano C, Illanes A, Casablancas A, Gamez X, Cairo JJ, Godia C (2001) Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnol Prog 17:1032–1041Google Scholar
  5. Altamirano C, Paredes C, Illanes A, Cairo JJ, Godia F (2004) Strategies for fed-batch cultivation of t-PA producing CHO cells: substitution of glucose and glutamine and rational design of culture medium. J Biotechnol 110:171–179Google Scholar
  6. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044Google Scholar
  7. Bader M (1980) A systematic-approach to standard addition methods in instrumental analysis. J Chem Educ 57:703–706CrossRefGoogle Scholar
  8. Bajad SU, Lu WY, Kimball EH, Yuan J, Peterson C, Rabinowitz JD (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 1125:76–88Google Scholar
  9. Balcarcel RR, Clark LM (2003) Metabolic screening of mammalian cell cultures using well-plates. Biotechnol Prog 19:98–108Google Scholar
  10. Baran R, Kochi H, Saito N, Suematsu M, Soga T, Nishioka T, Robert M, Tomita M (2006) MathDAMP: a package for differential analysis of metabolite profiles. Bmc Bioinformatics 7:530Google Scholar
  11. Barsch A, Patschkowski T, Niehaus K (2004) Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Funct Integr Genomics 4:219–230Google Scholar
  12. Beckonert O, Monnerjahn K, Bonk U, Leibfritz D (2003) Visualizing metabolic changes in breast-cancer tissue using H-1-NMR spectroscopy and self-organizing maps. Nmr Biomed 16:1–11Google Scholar
  13. Bergmeyer H (1984) Methods of enzymatic analysis, vol 6 and 7, 3rd edn. VCH, WeinheimGoogle Scholar
  14. Bernofsk C, Swan M (1973) Improved cycling assay for nicotinamide adenine-dinucleotide. Anal Biochem 53:452–458Google Scholar
  15. Bertau M, Burli M (2000) Enantioselective microbial reduction with baker’s yeast on an industrial scale. Chimia 54:503–507Google Scholar
  16. Bhattacharya M, Fuhrman L, Ingram A, Nickerson KW, Conway T (1995) Single-run separation and detection of multiple metabolic intermediates by anion-exchange high-performance liquid-chromatography and application to cell pool extracts prepared from Escherichia coli. Anal Biochem 232:98–106Google Scholar
  17. Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES,Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425Google Scholar
  18. Blank LM, Kuepfer L, Sauer U (2005) Large-scale C-13-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biology 6:Art. no. R49Google Scholar
  19. Bölling C, Fiehn O (2005) Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol 139:1995–2005Google Scholar
  20. Bonarius HP, Hatzimanikatis V, Meesters KP, de Gooijer CD, Schmid G, Tramper J (1996) Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechn Bioeng 50:299–318Google Scholar
  21. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FCP, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371Google Scholar
  22. Breitling R, Pitt AR, Barrett MP (2006) Precision mapping of the metabolome. Trends Biotechnol 24:543–548Google Scholar
  23. Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824Google Scholar
  24. Broeckling CD, Reddy IR, Duran AL, Zhao XC, Sumner LW (2006) MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal Chem 78:4334–4341Google Scholar
  25. Brown SC, Kruppa G, Dasseux JL (2005) Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom Rev 24:223–231Google Scholar
  26. Buchholz A, Takors R, Wandrey C (2001) Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal Biochem 295:129–137Google Scholar
  27. Buchholz A, Hurlebaus J, Wandrey C, Takors R (2002) Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng 19:5–15Google Scholar
  28. Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291Google Scholar
  29. Buziol S, Bashir I, Baumeister A, Claassen W, Noisommit-Rizzi N, Mailinger W, Reuss M (2002) New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale. Biotechnol Bioeng 80:632–636Google Scholar
  30. Castrillo JI, Hayes A, Mohammed S, Gaskell SJ, Oliver SG (2003) An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62:929–937Google Scholar
  31. Chassagnole C, Fell DA, Rais B, Kudla B, Mazat JP (2001) Control of the threonine-synthesis pathway in Escherichia coli: a theoretical and experimental approach. Biochemical J 356:433–444Google Scholar
  32. Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 79:53–73Google Scholar
  33. Christensen B, Nielsen J (1999) Isotopomer Analysis using GC-MS. Metab Eng 1:282–290Google Scholar
  34. Churchwell MI, Twaddle NC, Meeker LR, Doerge DR (2005) Improving LC-MS sensitivity through increases in chromatographic performance: comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 825:134–143Google Scholar
  35. Coulier L, Bas R, Jespersen S, Verheij E, van der Werf MJ, Hankemeier T (2006) Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 78:6573–6582Google Scholar
  36. Cruz HJ, Moreira JL, Carrondo MJT (1999) Metabolic shifts by nutrient manipulation in continuous cultures of BHK cells. Biotechnol Bioeng 66:104–113Google Scholar
  37. Dalluge JJ, Smith S, Sanchez-Riera F, McGuire C, Hobson R (2004) Potential of fermentation profiling via rapid measurement of amino acid metabolism by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1043:3–7Google Scholar
  38. Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16:642–649Google Scholar
  39. De Graaf AA, Striegel K, Wittig RM, Laufer B, Schmitz G, Wiechert W, Sprenger GA, Sahm H (1999) Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by C-13- and P-31-NMR spectroscopy. Arch Microbiol 171:371–385Google Scholar
  40. Degenring D, Froemel C, Dikta G, Takors R (2004) Sensitivity analysis for the reduction of complex metabolism models. J Process Control 14:729–745Google Scholar
  41. Dekoning W, Vandam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123Google Scholar
  42. Dell KA, Frost JW (1993) Identification and removal of impediments to biocatalytic synthesis of aromatics from d-glucose-rate-limiting enzymes in the common pathway of aromatic amino-acid biosynthesis. J Am Chem Soc 115:11581–11589Google Scholar
  43. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78Google Scholar
  44. Dowd JE, Kwok KE, Piret JM (2001) Glucose-based optimization of CHO-cell perfusion cultures. Biotechnol Bioeng 75:252–256Google Scholar
  45. Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625Google Scholar
  46. Duran AL, Yang J, Wang LJ, Sumner LW (2003) Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19:2283–2293Google Scholar
  47. Edwards JL, Chisolm CN, Shackman JG, Kennedy RT (2006) Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. J Chromatogr A 1106:80–88Google Scholar
  48. Elias CB, Carpentier E, Durocher Y, Bisson L, Wagner R, Kamen A (2003) Improving glucose and glutamine metabolism of human HEK 293 and Trichoplusia ni insect cells engineered to express a cytosolic pyruvate carboxylase enzyme. Biotechnol Prog 19:90–97Google Scholar
  49. Europa AF, Gambhir A, Fu PC, Hu WS (2000) Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol Bioeng 67:25–34Google Scholar
  50. Even S, Lindley ND, Cocaign-Bousquet M (2003) Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures. Microbiology-Sgm 149:1935–1944Google Scholar
  51. Fell DA (2001) Beyond genomics. Trends Genet 17:680–682Google Scholar
  52. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science 246:64–71Google Scholar
  53. Feurle J, Jomaa H, Wilhelm M, Gutsche B, Herderich M (1998) Analysis of phosphorylated carbohydrates by high-performance liquid chromatography electrospray ionization tandem mass spectrometry utilising a beta-cyclodextrin bonded stationary phase. J Chromatogr A 803:111–119Google Scholar
  54. Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Compar Funct Genom 2:155–168Google Scholar
  55. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171Google Scholar
  56. Fiehn O, Weckwerth W (2003) Deciphering metabolic networks. Eur J Biochem 270:579–588Google Scholar
  57. Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161Google Scholar
  58. Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72:3573–3580Google Scholar
  59. Fischer E, Sauer U (2003) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur J Biochem 270:880–891Google Scholar
  60. Fischer E, Sauer U (2005) Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Genet 37:636–640Google Scholar
  61. Fischer E, Zamboni N, Sauer U (2004) High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived C-13 constraints. Anal Biochem 325:308–316Google Scholar
  62. Forbes NS, Clark DS, Blanch HW (2000) Analysis of metabolic flux in mammalian cells. In: Schügerl K, Bellgardt H (ed) Bioreaction engineering. Springer, Berlin Heidelberg Heidelberg, p 556–594Google Scholar
  63. Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253Google Scholar
  64. Fuzfai Z, Katona ZF, Kovacs E, Molnar-Perl I (2004) Simultaneous identification and quantification of the sugar, sugar alcohol, and carboxylic acid contents of sour cherry, apple, and ber fruits, as their trimethylsilyl derivatives, by gas chromatography-mass spectrometry. J Agric Food Chem 52:7444–7452Google Scholar
  65. Gambhir A, Korke R, Lee JC, Fu PC, Europa A, Hu WS (2003) Analysis of cellular metabolism of hybridoma cells at distinct physiological states. J Biosci Bioeng 95:317–327Google Scholar
  66. Gebhardt R, Hengstler JG, Muller D, Glockner R, Buenning P, Laube B, Schmelzer E, Ullrich M, Utesch D, Hewitt N, Ringel M, Hilz BR, Bader A, Langsch A, Koose T, Burger HJ, Maas J, Oesch F (2003) New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures. Drug Metab Rev 35:145–213Google Scholar
  67. Genzel Y, Behrendt I, Konig S, Sann H, Reichl U (2004) Metabolism of MDCK cells during cell growth and influenza virus production in large-scale microcarrier culture. Vaccine 22:2202–2208Google Scholar
  68. Genzel Y, Ritter JB, Konig S, Alt R, Reichl U (2005) Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol Prog 21:58–69Google Scholar
  69. Glinski M, Weckwerth W (2006) The role of mass spectrometry in plant systems biology. Mass Spectrom Rev 25:173–214Google Scholar
  70. Godia C, Cairo JJ (2006) Cell metabolism. In: Ozturk SS, Hu WS (eds) Cell culture technology for pharmaceutical and cell-based therapies. CRC, New York, p 81–112Google Scholar
  71. Goodacre R (2005) Metabolomics—the way forward. Metabolomics 1:1–2Google Scholar
  72. Groussac E, Ortiz M, Francois J (2000) Improved protocols for quantitative determination of metabolites from biological samples using high performance ionic-exchange chromatography with conductimetric and pulsed amperometric detection. Enzyme Microb Technol 26:715–723Google Scholar
  73. Haberland J, Hummel W, Daussmann T, Liese A (2002) New continuous production process for enantiopure (2R,5R)-hexanediol. Org Process Res Dev 6:458–462Google Scholar
  74. Haberland J, Kriegesmann A, Wolfram E, Hummel W, Liese A (2002) Diastereoselective synthesis of optically active (2 R,5 R)-hexanediol. Appl Microbiol Biotechnol 58:595–599Google Scholar
  75. Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169:453–468Google Scholar
  76. Hansen HA, Emborg C (1994) Extra and Intracellular amino-acid-concentrations in continuous Chinese-hamster ovary cell-culture. Appl Microbiol Biotechnol 41:560–564Google Scholar
  77. Harvey DJ, Horning MG (1973) Characterization of trimethylsilyl derivatives of sugar phosphates and related compounds by gas-chromatography and gas-chromatography mass-spectrometry. J Chromatogr 76:51–62Google Scholar
  78. Haunschild MD, Freisleben B, Takors R, Wiechert W (2005) Investigating the dynamic behavior of biochemical networks using model families. Bioinformatics 21:1617–1625Google Scholar
  79. Heijnen JJ (2005) Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng 91:534–545Google Scholar
  80. Higareda AE, Possani LD, Ramirez OT (1994) Metabolic and kinetic-studies of hybridomas in exponentially fed-batch cultures using t-flasks. Cytotechnology 15:73–86Google Scholar
  81. Hiller GW, Clark DS, Blanch HW (1993) Cell retention-chemostat studies of hybridoma cells-analysis of hybridoma growth and metabolism in continuous suspension-culture on serum-free medium. Biotechnol Bioeng 42:185–195Google Scholar
  82. Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6:4716–4723Google Scholar
  83. Hu WS, Aunins JG (1997) Large-scale mammalian cell culture. Curr Opin Biotechnol 8:148–153Google Scholar
  84. Hummel W, Riebel B (2002) (R)-specific alcohol dehydrogenase from lactobacillus with improved catalytic activity using a NAD+substrate. US Patent 6,413,750 B1Google Scholar
  85. Iwatani S, van Dien S, Shimbo K, Kubota K, Kageyama N, Iwahata D, Miyano H, Hirayama K, Usuda Y, Shimizu K, Matsui K (2007) Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J Biotechnol 128:93–111Google Scholar
  86. Jensen NBS, Jokumsen KV,Villadsen J (1999) Determination of the phosphorylated sugars of the Embden–Meyerhoff–Parnas pathway in Lactococcus lactis using a fast sampling technique and solid phase extraction. Biotechnol Bioeng 63:356–362Google Scholar
  87. Kaderbhai NN, Broadhurst DI, Ellis DI, Goodacre R, Kell DB (2003) Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Compar Funct Genom 4:376–391Google Scholar
  88. Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636Google Scholar
  89. Kataoka M, Yamamoto K, Kawabata H, Wada M, Kita K, Yanase H, Shimizu S (1999) Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 51:486–490Google Scholar
  90. Katona ZF, Sass P, Molnar-Perl I (1999) Simultaneous determination of sugars, sugar alcohols, acids and amino acids in apricots by gas chromatography-mass spectrometry. J Chromatogr A 847:91–102Google Scholar
  91. Katz JE, Dumlao DS, Clarke S, Hau J (2004) A new technique (COMSPARI) to facilitate the identification of minor compounds in complex mixtures by GC/MS and LC/MS: tools for the visualization of matched datasets. J Am Soc Mass Spectrom 15:580–584Google Scholar
  92. Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339Google Scholar
  93. Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7:296–307Google Scholar
  94. Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3:557–565Google Scholar
  95. Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gill M, Karp PD (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33:D334–D337Google Scholar
  96. Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78:1272–1281Google Scholar
  97. Kopka J (2006) Current challenges and developments in GC-MS based metabolite profiling technology. J Biotechnol 124:312–322Google Scholar
  98. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638Google Scholar
  99. Lafaye A, Labarre J, Tabet J-C, Ezan E, Junot C (2005) Liquid chromatography-mass spectrometry and <sup>15</sup>N metabolic labeling for quantitative metabolic profiling. Anal Chem 77:2026–2033Google Scholar
  100. Lanks KW (1987) End products of glucose and glutamine metabolism by L929 cells. J Biol Chem 262:10093–10097Google Scholar
  101. Lederberg J, McCray AT (2001) ‘Ome sweet’omics—a genealogical treasury of words. Scientist 15:8–8Google Scholar
  102. Lee YY, Yap MG, Hu WS, Wong KT (2003) Low-glutamine fed-batch cultures of 293-HEK serum-free suspension cells for adenovirus production. Biotechnol Prog 19:501–509Google Scholar
  103. Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358Google Scholar
  104. Liese A, Seelbach C, Wandrey C (2006) Industrial biotransformations, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  105. Lilius EM, Multanen VM, Toivonen V (1979) Quantitative extraction and estimation of intracellular nicotinamide nucleotides of Escherichia coli. Anal Biochem 99:22–27Google Scholar
  106. Lindsley JE, Rutter J (2006) Whence cometh the allosterome? Proc Natl Acad Sci USA 103:10533–10535Google Scholar
  107. Lu W, Kimball E, Rabinowitz JD (2006) A high-performance liquid chromatography-tandem mass spectrometry method for quantitation of nitrogen-containing intracellular metabolites. J Am Soc Mass Spectrom 17:37–50Google Scholar
  108. Luo B, Groenke K, Takors R, Wandrey C, Oldiges M (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 1147:153–164Google Scholar
  109. Lutz NW, Franks SE, Frank MH, Pomer S, Hull WE (2005) Investigation of multidrug resistance in cultured human renal cell carcinoma cells by P-31-NMR spectroscopy and treatment survival assays. Margma 18:144–161Google Scholar
  110. Magnus JB, Hollwedel D, Oldiges M, Takors R (2006) Monitoring and modeling of the reaction dynamics in the valine/leucine synthesis pathway in Corynebacterium glutamicum. Biotechnol Prog 22:1071–1083Google Scholar
  111. Mailinger W, Baumeister A, Reuss M, Rizzi M (1998) Rapid and highly automated determination of adenine and pyridine nucleotides in extracts of Saccharomyces cerevisiae using a micro robotic sample preparation HPLC system. J Biotechnol 63:155–166Google Scholar
  112. Maranga L, Goochee CF (2006) Metabolism of PER.C6 (TM) cells cultivated under fed-batch conditions at low glucose and glutamine levels. Biotechnol Bioeng 94:139–150Google Scholar
  113. Marriott P, Shellie R (2002) Principles and applications of comprehensive two-dimensional gas chromatography. TrAC, Trends Anal Chem 21:573–583Google Scholar
  114. Marx A, deGraaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111–129Google Scholar
  115. Mashego MR, Wu L, van Dam JC, Ras C, Vinke JL, van Winden WA, van Gulik WM, Heijnen JJ (2004) MIRACLE: mass isotopomer ratio analysis of U-C-13-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng 85:620–628Google Scholar
  116. Mashego MR, van Gulik WM, Vinke JL, Visser D, Heijnen JJ (2006) In vivo kinetics with rapid perturbation experiments in Saccharomyces cerevisiae using a second-generation BioScope. Metab Eng 8:370–383Google Scholar
  117. Mashego MR, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen JJ (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29:1–16Google Scholar
  118. Mazurek S, Michel A, Eigenbrodt E (1997) Effect of extracellular AMP on cell proliferation and metabolism of breast cancer cell lines with high and low glycolytic rates. J Biol Chem 272:4941–4952Google Scholar
  119. Mazurek S, Zwerschke W, Jansen-Durr P, Eigenbrodt E (2001) Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem J 356:247–256Google Scholar
  120. Meyer S, Noisommit-Rizzi N, Reuss M, Neubauer P (1999) Optimized analysis of intracellular adenosine and guanosine phosphates in Escherichia coli. Anal Biochem 271:43–52Google Scholar
  121. Miccheli AT, Miccheli A, Di Clemente R, Valerio M, Coluccia P, Bizzarri M, Conti F (2006) NMR-based metabolic profiling of human hepatoma cells in relation to cell growth by culture media analysis. Biochimica Et Biophysica Acta General Subjects 1760:1723–1731Google Scholar
  122. Miller WM, Blanch HW, Wilke CR (2000) A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: effect of nutrient concentration, dilution rate, and pH. Biotechnol Bioeng 67:853–871 (Reprinted from Biotechnol Bioeng 32:947–965, 1988)Google Scholar
  123. Monique Piraud CV-SKPCEJ-PSDB (2005) Ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometric analysis of 76 underivatized amino acids of biological interest: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Rapid Commun Mass Spectrom 19:1587–1602Google Scholar
  124. Mungur R, Glass ADM, Goodenow DB, Lightfoot DA (2005) Metabolite fingerprinting in transgenic Nicotiana tabacum altered by the Escherichia coli glutamate dehydrogenase gene. J Biomed Biotechnol 2005(2):198–214Google Scholar
  125. Nadeau I, Jacob D, Perrier M, Kamen A (2000) 293SF metabolic flux analysis during cell growth and infection with an adenoviral vector. Biotechnol Prog 16:872–884Google Scholar
  126. Nasution U, van Gulik WM, Kleijn RJ, van Winden WA, Proell A, Heiinen JJ (2006) Measurement of intracellular metabolites of primary metabolism and adenine nucleotides in chemostat cultivated Penicillium chrysogenum. Biotechnol Bioeng 94:159–166Google Scholar
  127. Neidhardt FC, Umbarger HE (1996) Chemical composition of Escherichia coli. In: Neidhardt FC (ed) Escherichia coli and salmonella typhimurium—cellular and molecular biology. ASM, Washington, DCGoogle Scholar
  128. Neves AR, Ramos A, Nunes MC, Kleerebezem M, Hugenholtz J, de Vos WM, Almeida J, Santos H (1999) In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol Bioeng 64:200–212Google Scholar
  129. Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55:263–283Google Scholar
  130. Nielsen J, Oliver S (2005) The next wave in metabolome analysis. Trends Biotech 23:544–546Google Scholar
  131. Nobeli I, Ponstingl H, Krissinel EB, Thornton JM (2003) A structure-based anatomy of the E. coli metabolome. J Mol Biol 334:697–719Google Scholar
  132. Noble M, Sinha Y, Kolupaev A, Demin O, Earnshaw D, Tobin F, West J, Martin JD, Qiu CY, Liu WS, DeWolf WE, Tew D, Goryanin II (2006) The kinetic model of the shikimate pathway as a tool to optimize enzyme assays for high-throughput screening. Biotechnol Bioeng 95:560–573Google Scholar
  133. Noh K, Wahl A, Wiechert W (2006) Computational tools for isotopically instationary C-13 labeling experiments under metabolic steady state conditions. Metab Eng 8:554–577Google Scholar
  134. Noh K, Gronke K, Luo B, Takors R, Oldiges M,Wiechert W (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol 129:249–267Google Scholar
  135. Ogino H (1982) Biosynthesis of aromatic compounds: 13C NMR spectroscopy of whole Escherichia coli cells. Proc Natl Acad Sci USA 79:5828–5832Google Scholar
  136. Oldiges M, Takors R (2005) Applying metabolic profiling techniques for stimulus-response experiments: chances and pitfalls. Adv Biochem Eng Biotechnol 92:173–196Google Scholar
  137. Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R (2004) Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog 20:1623–1633Google Scholar
  138. Oldiges M, Noack S, Wahl A, Qeli E, Freisleben B, Wiechert W (2006) From enzyme kinetics to metabolic network modeling visualization tool for enhanced kinetic analysis of biochemical network models. Eng Life Sci 6:155–162Google Scholar
  139. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378Google Scholar
  140. Ozturk SS, Riley MR, Palsson BO (1992) Effects of ammonia and lactate on hybridoma growth, metabolism and antibody production. Biotechnol Bioeng 39:418–431Google Scholar
  141. Pandor A, Eastham J, Beverley C, Chilcott J, Paisley S (2004) Clinical effectiveness and cost-effectiveness of neonatal screening for inborn errors of metabolism using tandem mass spectrometry: a systematic review. Health Technol Assess 8:1–121Google Scholar
  142. Park SJ, Lee SY, Cho J, Kim TY, Lee JW, Park JH, Han MJ (2005) Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Appl Microbiol Biotechnol 68:567–579Google Scholar
  143. Peters J (1998) Dehydrogenases-characteristics, design of reaction conditions and applications. In: Rehm HJ, Reed G, Pühler A, Stadler P (eds) Biotechnology. Wiley-VCH, WeinheimGoogle Scholar
  144. Pissara PD, Nielsen J, Bazin MJ (1996) Pathway kinetics and metabolic control analysis of a high-yielding strain of Penicillium chrysogenum during fed batch cultivations. Biotechnol Bioeng 51:168–176Google Scholar
  145. Plumb R, Castro-Perez J, Granger J, Beattie I, Joncour K, Wright A (2004) Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 18:2331–2337Google Scholar
  146. Raab RM, Tyo K, Stephanopoulos G (2005) Metabolic engineering, Volume 100 of Advances in Biochemical Engineering and Biotechnology. Springer, Berlin Heidelberg New York, p 1–17Google Scholar
  147. Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50Google Scholar
  148. Ramautar R, Demirci A, de Jong GJ (2006) Capillary electrophoresis in metabolomics. TrAC, Trends Anal Chem 25:455–466Google Scholar
  149. Rashed MS (2001) Clinical applications of tandem mass spectrometry: ten years of diagnosis and screening for inherited metabolic diseases. J Chromatogr B-Anal Technol Biomed Life Sci 758:27–48Google Scholar
  150. Ritter JB, Genzel Y, Reichl U (2006) High-performance anion-exchange chromatography using on-line electrolytic eluent generation for the determination of more than 25 intermediates from energy metabolism of mammalian cells in culture. J Chromatogr B-Anal Technol Biomed Life Sci 843:216–226Google Scholar
  151. Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. 2. Mathematical model. Biotechnol Bioeng 55:592–608Google Scholar
  152. Rochfort S (2005) Metabolomics reviewed: a new “Omics” platform technology for systems biology and implications for natural products research. J Nat Products 68:1813–1820Google Scholar
  153. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier, Amsterdam New York OxfordGoogle Scholar
  154. Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142Google Scholar
  155. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29Google Scholar
  156. Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133:84–99Google Scholar
  157. Ruijter GJG, Visser J (1996) Determination of intermediary metabolites in Aspergillus niger. J Microbiol Methods 25:295–302Google Scholar
  158. Saito N, Robert M, Kitamura S, Baran R, Soga T, Mori H, Nishioka T, Tomita M (2006) Metabolomics approach for enzyme discovery. J Proteome Res 5:1979–1987Google Scholar
  159. Sauer U (2006) Metabolic networks in motion: C-13-based flux analysis. Mol Syst Biol 2, 62 DOI  10.1038/msb4100109
  160. Schaefer U, Boos W, Takors R, Weuster-Botz D (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Biochem 270:88–96Google Scholar
  161. Schaub J, Schiesling C, Reuss M, Dauner M (2006) Integrated sampling procedure for metabolome analysis. Biotechnol Prog 22:1434–1442Google Scholar
  162. Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. Febs Lett 579:1332–1337Google Scholar
  163. Schlotterbeck G, Ross A, Dieterle F, Senn H (2006) Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics 7:1055–1075Google Scholar
  164. Schmid G, Keller T (1992) Monitoring hybridoma metabolism in continuous suspension-culture at the intracellular level. 1. Steady-state responses to different glutamine feed concentrations. Cytotechnology 9:217–229Google Scholar
  165. Schomburg I, Chang A, Schomburg D (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30:47–49Google Scholar
  166. Shellie RA (2005) Comprehensive two-dimensional gas chromatography-mass spectrometry and its use in high-resolution metabolomics. Aust J Chem 58:619–619Google Scholar
  167. Shellie RA, Welthagen W, Zrostlikova J, Spranger J, Ristow M, Fiehn O, Zimmermann R (2005) Statistical methods for comparing comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry results: metabolomic analysis of mouse tissue extracts. J Chromatogr A 1086:83–90Google Scholar
  168. Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56:273–286Google Scholar
  169. Smilde AK, vanderWerf MJ, Bijlsma S, vanderWerff-vanderVat BJC, Jellema RH (2005) Fusion of mass spectrometry-based metabolomics data. Anal Chem 77:6729–6736Google Scholar
  170. Smits HP, Cohen A, Buttler T, Nielsen J, Olsson L (1998) Cleanup and analysis of sugar phosphates in biological extracts by using solid-phase extraction and anion-exchange chromatography with pulsed amperometric detection. Anal Biochem 261:36–42Google Scholar
  171. Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T (2002) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74:2233–2239Google Scholar
  172. Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2:488–494Google Scholar
  173. Staack RF, Varesio E, Hopfgartner G (2005) The combination of liquid chromatography/tandem mass spectrometry and chip-based infusion for improved screening and characterization of drug metabolites. Rapid Commun Mass Spectrom 19:618–626Google Scholar
  174. Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10:770–781Google Scholar
  175. Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267Google Scholar
  176. Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556Google Scholar
  177. Strelkov S, von Elstermann M, Schomburg D (2004) Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry. Biol Chem 385:853–861Google Scholar
  178. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836Google Scholar
  179. Tarr MA, Zhu J, Cole RB (2000) Atmospheric pressure ionization mass spectrometry. In: Meyers RA (ed) Encyclopedia of analytical chemistry, vol. 13. Wiley, Chichester, p 11597–11630Google Scholar
  180. Taymaz H, Mashego MR, vanWinden WA, van Gulik WM, Heijjnen JJ (2006) Evaluation of experimental protocols for metabolome analysis in Escherichia coli K-12 MG1655 (Poster contribution). In: Metabolic engineering VI conference, Nordwijkerhout, The NetherlandsGoogle Scholar
  181. Teleman A, Richard P, Toivari M, Penttilla M (1999) Identification and quantitation of phosphorus metabolites in yeast neutral pH extracts by nuclear magnetic resonance spectroscopy. Anal Biochem 272:71–79Google Scholar
  182. Theobald U, Mailinger W, Reuss M, Rizzi M (1993) In vivo analysis of glucose-induced fast changes in yeast adenine-nucleotide pool applying a rapid sampling technique. Anal Biochem 214:31–37Google Scholar
  183. Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. 1. Experimental observations. Biotechnol Bioeng 55:305–316Google Scholar
  184. Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem 301:298–307Google Scholar
  185. Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J Bacteriol 180:5109–5116Google Scholar
  186. van Dam JC, Eman MR, Frank J, Lange HC, van Dedem GWK, Heijnen SJ (2002) Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection. Anal Chim Acta 460:209–218Google Scholar
  187. van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. Bmc Genomics 7:142Google Scholar
  188. van Winden WA, van Dam JC, Ras C, Kleijn RJ, Vinke JL, van Gulik WM, Heijnen JJ (2005) Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of C-13-labeled primary metabolites. Fems Yeast Res 5:559–568Google Scholar
  189. Vaseghi S, Baumeister A, Rizzi M, Reuss M (1999) In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab Eng 1:128–140Google Scholar
  190. Villas-Boas SG, Hojer-Pedersen J, Akesson M, Smedsgaard J, Nielsen J (2005) Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22:1155–1169Google Scholar
  191. Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24:613–646Google Scholar
  192. Visser D, van Zuylen GA, van Dam JC, Oudshoorn A, Eman MR, Ras C, van Gulik WM, Frank J, van Dedem GWK, Heijnen JJ (2002) Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous-pulse experiments. Biotechnol Bioeng 79:674–681Google Scholar
  193. Visser D, Schmid JW, Mauch K, Reuss M, Heijnen JJ (2004) Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics. Metab Eng 6:378–390Google Scholar
  194. Voit EO, Almeida J, Marino S, Lall R, Goel G, Neves AR, Santos H (2006) Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study. IEE Proc Syst Biol 153:286–298Google Scholar
  195. Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62:887–900Google Scholar
  196. Wahl SA, Haunschild MD, Oldiges M, Wiechert W (2006) Unravelling the regulatory structure of biochemical networks using stimulus response experiments and large-scale model selection. IEE Proc Syst Biol 153:275–285Google Scholar
  197. Walton AZ, Stewart JD (2004) Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells. Biotechnol Prog 20:403–411Google Scholar
  198. Wandrey C, Liese A, Kihumbu D (2000) Industrial biocatalysis: past, present, and future. Org Process Res Dev 4:286–290Google Scholar
  199. Wang QZ, Wu CY, Chen T, Chen X, Zhao XM (2006) Integrating metabolomics into a systems biology framework to exploit metabolic complexity: strategies and applications in microorganisms. Appl Microbiol Biotechnol 70:151–161Google Scholar
  200. Weckbecker A, Hummel W (2004) Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP(+)-dependent alcohol dehydrogenase and NAD(+)-dependent formate dehydrogenase. Biotechnol Lett 26:1739–1744Google Scholar
  201. Welthagen W, Shellie RA, Spranger J, Ristow M, Zimmermann R, Fiehn O (2005) Comprehensive two dimensional gas chromatography-time of flight mass spectrometry, GCxGC-TOF for high resolution metabolomics: biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice. Metabolomics 1:65–73Google Scholar
  202. Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74–92Google Scholar
  203. Wichmann R, Vasic-Racki D (2005) Cofactor regeneration at the lab scale. Adv Biochem Eng/Biotechnol 92:225–260Google Scholar
  204. Wiechert W (2001) C-13 metabolic flux analysis. Metab Eng 3:195–206Google Scholar
  205. Wiechert W (2002) Modeling and simulation: tools for metabolic engineering. J Biotechnol 94:37–63Google Scholar
  206. Wiechert W, Takors R (2003) Validation of metabolic models: concepts, tools and problems. In: WesterhoffB HV, Kholodenko N (eds) Metabolic engineering in a post genomic era. Horizon Bioscience, WymondhamGoogle Scholar
  207. Wiendahl C, Brandner JJ, Kuppers C, Luo B, Schygulla U, Noll T, Oldiges M (2007) A microstructure heat exchanger for quenching the metabolism of mammalian cells. Chem Eng Technol 30:322–328Google Scholar
  208. Winkler H (1920) Verbeitung und Ursache der Parthenogenesis im Pflanzen und Tierreiche. Fischer Verlag, JenaGoogle Scholar
  209. Wittmann C, Kromer JO, Kiefer P, Binz T, Heinzle E (2004) Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal Biochem 327:135–139Google Scholar
  210. Womersley C (1981) A micromethod for the extraction and quantitative-analysis of free carbohydrates in nematode tissue. Anal Biochem 112:182–189Google Scholar
  211. Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem 336:164–171Google Scholar
  212. Yang C, Hua Q, Shimizu K (1999) Development of a kinetic model for l-lysine biosynthesis in Corynebacterium glutamicum and its application to metabolic control analysis. J Biosci Bioeng 88:393–403Google Scholar
  213. Zimmer D (2003) Introduction to quantitative liquid chromatography-tandem mass spectrometry (LC-MS-MS). Chromatographia 57:S325–S332Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Marco Oldiges
    • 1
    Email author
  • Stephan Lütz
    • 1
  • Simon Pflug
    • 1
  • Kirsten Schroer
    • 1
  • Nadine Stein
    • 1
  • Christiane Wiendahl
    • 1
  1. 1.Institute of Biotechnology 2Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations