Skip to main content

Advertisement

Log in

Metabolomics: current state and evolving methodologies and tools

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, metabolomics developed to an accepted and valuable tool in life sciences. Substantial improvements of analytical hardware allow metabolomics to run routinely now. Data are successfully used to investigate genotype–phenotype relations of strains and mutants. Metabolomics facilitates metabolic engineering to optimise mircoorganisms for white biotechnology and spreads to the investigation of biotransformations and cell culture. Metabolomics serves not only as a source of qualitative but also quantitative data of intra-cellular metabolites essential for the model-based description of the metabolic network operating under in vivo conditions. To collect reliable metabolome data sets, culture and sampling conditions, as well as the cells’ metabolic state, are crucial. Hence, application of biochemical engineering principles and method standardisation efforts become important. Together with the other more established omics technologies, metabolomics will strengthen its claim to contribute to the detailed understanding of the in vivo function of gene products, biochemical and regulatory networks and, even more ambitious, the mathematical description and simulation of the whole cell in the systems biology approach. This knowledge will allow the construction of designer organisms for process application using biotransformation and fermentative approaches making effective use of single enzymes, whole microbial and even higher cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe DB (2002) Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. Omics 6:217–234

    Article  CAS  PubMed  Google Scholar 

  • Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–696

    Article  CAS  PubMed  Google Scholar 

  • Altamirano C, Cairo JJ, Godia F (2001) Decoupling cell growth and product formation in Chinese hamster ovary cells through metabolic control. Biotechnol Bioeng 76:351–360

    Article  CAS  PubMed  Google Scholar 

  • Altamirano C, Illanes A, Casablancas A, Gamez X, Cairo JJ, Godia C (2001) Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnol Prog 17:1032–1041

    Article  CAS  PubMed  Google Scholar 

  • Altamirano C, Paredes C, Illanes A, Cairo JJ, Godia F (2004) Strategies for fed-batch cultivation of t-PA producing CHO cells: substitution of glucose and glutamine and rational design of culture medium. J Biotechnol 110:171–179

    Article  CAS  PubMed  Google Scholar 

  • Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044

    Article  CAS  PubMed  Google Scholar 

  • Bader M (1980) A systematic-approach to standard addition methods in instrumental analysis. J Chem Educ 57:703–706

    Article  CAS  Google Scholar 

  • Bajad SU, Lu WY, Kimball EH, Yuan J, Peterson C, Rabinowitz JD (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 1125:76–88

    Article  CAS  PubMed  Google Scholar 

  • Balcarcel RR, Clark LM (2003) Metabolic screening of mammalian cell cultures using well-plates. Biotechnol Prog 19:98–108

    Article  CAS  PubMed  Google Scholar 

  • Baran R, Kochi H, Saito N, Suematsu M, Soga T, Nishioka T, Robert M, Tomita M (2006) MathDAMP: a package for differential analysis of metabolite profiles. Bmc Bioinformatics 7:530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barsch A, Patschkowski T, Niehaus K (2004) Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Funct Integr Genomics 4:219–230

    Article  CAS  PubMed  Google Scholar 

  • Beckonert O, Monnerjahn K, Bonk U, Leibfritz D (2003) Visualizing metabolic changes in breast-cancer tissue using H-1-NMR spectroscopy and self-organizing maps. Nmr Biomed 16:1–11

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer H (1984) Methods of enzymatic analysis, vol 6 and 7, 3rd edn. VCH, Weinheim

    Google Scholar 

  • Bernofsk C, Swan M (1973) Improved cycling assay for nicotinamide adenine-dinucleotide. Anal Biochem 53:452–458

    Article  Google Scholar 

  • Bertau M, Burli M (2000) Enantioselective microbial reduction with baker’s yeast on an industrial scale. Chimia 54:503–507

    CAS  Google Scholar 

  • Bhattacharya M, Fuhrman L, Ingram A, Nickerson KW, Conway T (1995) Single-run separation and detection of multiple metabolic intermediates by anion-exchange high-performance liquid-chromatography and application to cell pool extracts prepared from Escherichia coli. Anal Biochem 232:98–106

    Article  CAS  PubMed  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES,Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    Article  CAS  PubMed  Google Scholar 

  • Blank LM, Kuepfer L, Sauer U (2005) Large-scale C-13-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biology 6:Art. no. R49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bölling C, Fiehn O (2005) Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol 139:1995–2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonarius HP, Hatzimanikatis V, Meesters KP, de Gooijer CD, Schmid G, Tramper J (1996) Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechn Bioeng 50:299–318

    Article  CAS  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FCP, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    Article  CAS  PubMed  Google Scholar 

  • Breitling R, Pitt AR, Barrett MP (2006) Precision mapping of the metabolome. Trends Biotechnol 24:543–548

    Article  CAS  PubMed  Google Scholar 

  • Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824

    Article  CAS  Google Scholar 

  • Broeckling CD, Reddy IR, Duran AL, Zhao XC, Sumner LW (2006) MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal Chem 78:4334–4341

    Article  CAS  PubMed  Google Scholar 

  • Brown SC, Kruppa G, Dasseux JL (2005) Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom Rev 24:223–231

    Article  CAS  PubMed  Google Scholar 

  • Buchholz A, Takors R, Wandrey C (2001) Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal Biochem 295:129–137

    Article  CAS  PubMed  Google Scholar 

  • Buchholz A, Hurlebaus J, Wandrey C, Takors R (2002) Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng 19:5–15

    Article  CAS  PubMed  Google Scholar 

  • Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    Article  CAS  PubMed  Google Scholar 

  • Buziol S, Bashir I, Baumeister A, Claassen W, Noisommit-Rizzi N, Mailinger W, Reuss M (2002) New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale. Biotechnol Bioeng 80:632–636

    Article  CAS  PubMed  Google Scholar 

  • Castrillo JI, Hayes A, Mohammed S, Gaskell SJ, Oliver SG (2003) An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62:929–937

    Article  CAS  PubMed  Google Scholar 

  • Chassagnole C, Fell DA, Rais B, Kudla B, Mazat JP (2001) Control of the threonine-synthesis pathway in Escherichia coli: a theoretical and experimental approach. Biochemical J 356:433–444

    Article  CAS  Google Scholar 

  • Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 79:53–73

    Article  CAS  PubMed  Google Scholar 

  • Christensen B, Nielsen J (1999) Isotopomer Analysis using GC-MS. Metab Eng 1:282–290

    Article  CAS  PubMed  Google Scholar 

  • Churchwell MI, Twaddle NC, Meeker LR, Doerge DR (2005) Improving LC-MS sensitivity through increases in chromatographic performance: comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 825:134–143

    Article  CAS  PubMed  Google Scholar 

  • Coulier L, Bas R, Jespersen S, Verheij E, van der Werf MJ, Hankemeier T (2006) Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 78:6573–6582

    Article  CAS  PubMed  Google Scholar 

  • Cruz HJ, Moreira JL, Carrondo MJT (1999) Metabolic shifts by nutrient manipulation in continuous cultures of BHK cells. Biotechnol Bioeng 66:104–113

    Article  CAS  PubMed  Google Scholar 

  • Dalluge JJ, Smith S, Sanchez-Riera F, McGuire C, Hobson R (2004) Potential of fermentation profiling via rapid measurement of amino acid metabolism by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1043:3–7

    Article  CAS  PubMed  Google Scholar 

  • Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16:642–649

    Article  CAS  PubMed  Google Scholar 

  • De Graaf AA, Striegel K, Wittig RM, Laufer B, Schmitz G, Wiechert W, Sprenger GA, Sahm H (1999) Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by C-13- and P-31-NMR spectroscopy. Arch Microbiol 171:371–385

    Article  PubMed  Google Scholar 

  • Degenring D, Froemel C, Dikta G, Takors R (2004) Sensitivity analysis for the reduction of complex metabolism models. J Process Control 14:729–745

    Article  CAS  Google Scholar 

  • Dekoning W, Vandam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123

    Article  CAS  Google Scholar 

  • Dell KA, Frost JW (1993) Identification and removal of impediments to biocatalytic synthesis of aromatics from d-glucose-rate-limiting enzymes in the common pathway of aromatic amino-acid biosynthesis. J Am Chem Soc 115:11581–11589

    Article  CAS  Google Scholar 

  • Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowd JE, Kwok KE, Piret JM (2001) Glucose-based optimization of CHO-cell perfusion cultures. Biotechnol Bioeng 75:252–256

    Article  CAS  PubMed  Google Scholar 

  • Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    Article  CAS  PubMed  Google Scholar 

  • Duran AL, Yang J, Wang LJ, Sumner LW (2003) Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19:2283–2293

    Article  CAS  PubMed  Google Scholar 

  • Edwards JL, Chisolm CN, Shackman JG, Kennedy RT (2006) Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. J Chromatogr A 1106:80–88

    Article  CAS  PubMed  Google Scholar 

  • Elias CB, Carpentier E, Durocher Y, Bisson L, Wagner R, Kamen A (2003) Improving glucose and glutamine metabolism of human HEK 293 and Trichoplusia ni insect cells engineered to express a cytosolic pyruvate carboxylase enzyme. Biotechnol Prog 19:90–97

    Article  CAS  PubMed  Google Scholar 

  • Europa AF, Gambhir A, Fu PC, Hu WS (2000) Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol Bioeng 67:25–34

    Article  CAS  PubMed  Google Scholar 

  • Even S, Lindley ND, Cocaign-Bousquet M (2003) Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures. Microbiology-Sgm 149:1935–1944

    Article  CAS  Google Scholar 

  • Fell DA (2001) Beyond genomics. Trends Genet 17:680–682

    Article  CAS  PubMed  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  • Feurle J, Jomaa H, Wilhelm M, Gutsche B, Herderich M (1998) Analysis of phosphorylated carbohydrates by high-performance liquid chromatography electrospray ionization tandem mass spectrometry utilising a beta-cyclodextrin bonded stationary phase. J Chromatogr A 803:111–119

    Article  CAS  Google Scholar 

  • Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Compar Funct Genom 2:155–168

    Article  CAS  Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O, Weckwerth W (2003) Deciphering metabolic networks. Eur J Biochem 270:579–588

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72:3573–3580

    Article  CAS  PubMed  Google Scholar 

  • Fischer E, Sauer U (2003) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur J Biochem 270:880–891

    Article  CAS  PubMed  Google Scholar 

  • Fischer E, Sauer U (2005) Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Genet 37:636–640

    Article  CAS  PubMed  Google Scholar 

  • Fischer E, Zamboni N, Sauer U (2004) High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived C-13 constraints. Anal Biochem 325:308–316

    Article  CAS  PubMed  Google Scholar 

  • Forbes NS, Clark DS, Blanch HW (2000) Analysis of metabolic flux in mammalian cells. In: Schügerl K, Bellgardt H (ed) Bioreaction engineering. Springer, Berlin Heidelberg Heidelberg, p 556–594

    Google Scholar 

  • Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuzfai Z, Katona ZF, Kovacs E, Molnar-Perl I (2004) Simultaneous identification and quantification of the sugar, sugar alcohol, and carboxylic acid contents of sour cherry, apple, and ber fruits, as their trimethylsilyl derivatives, by gas chromatography-mass spectrometry. J Agric Food Chem 52:7444–7452

    Article  PubMed  CAS  Google Scholar 

  • Gambhir A, Korke R, Lee JC, Fu PC, Europa A, Hu WS (2003) Analysis of cellular metabolism of hybridoma cells at distinct physiological states. J Biosci Bioeng 95:317–327

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt R, Hengstler JG, Muller D, Glockner R, Buenning P, Laube B, Schmelzer E, Ullrich M, Utesch D, Hewitt N, Ringel M, Hilz BR, Bader A, Langsch A, Koose T, Burger HJ, Maas J, Oesch F (2003) New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures. Drug Metab Rev 35:145–213

    Article  CAS  PubMed  Google Scholar 

  • Genzel Y, Behrendt I, Konig S, Sann H, Reichl U (2004) Metabolism of MDCK cells during cell growth and influenza virus production in large-scale microcarrier culture. Vaccine 22:2202–2208

    Article  CAS  PubMed  Google Scholar 

  • Genzel Y, Ritter JB, Konig S, Alt R, Reichl U (2005) Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol Prog 21:58–69

    Article  CAS  PubMed  Google Scholar 

  • Glinski M, Weckwerth W (2006) The role of mass spectrometry in plant systems biology. Mass Spectrom Rev 25:173–214

    Article  CAS  PubMed  Google Scholar 

  • Godia C, Cairo JJ (2006) Cell metabolism. In: Ozturk SS, Hu WS (eds) Cell culture technology for pharmaceutical and cell-based therapies. CRC, New York, p 81–112

    Google Scholar 

  • Goodacre R (2005) Metabolomics—the way forward. Metabolomics 1:1–2

    Article  CAS  Google Scholar 

  • Groussac E, Ortiz M, Francois J (2000) Improved protocols for quantitative determination of metabolites from biological samples using high performance ionic-exchange chromatography with conductimetric and pulsed amperometric detection. Enzyme Microb Technol 26:715–723

    Article  CAS  PubMed  Google Scholar 

  • Haberland J, Hummel W, Daussmann T, Liese A (2002) New continuous production process for enantiopure (2R,5R)-hexanediol. Org Process Res Dev 6:458–462

    Article  CAS  Google Scholar 

  • Haberland J, Kriegesmann A, Wolfram E, Hummel W, Liese A (2002) Diastereoselective synthesis of optically active (2 R,5 R)-hexanediol. Appl Microbiol Biotechnol 58:595–599

    Article  CAS  PubMed  Google Scholar 

  • Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169:453–468

    Article  CAS  PubMed  Google Scholar 

  • Hansen HA, Emborg C (1994) Extra and Intracellular amino-acid-concentrations in continuous Chinese-hamster ovary cell-culture. Appl Microbiol Biotechnol 41:560–564

    Article  CAS  PubMed  Google Scholar 

  • Harvey DJ, Horning MG (1973) Characterization of trimethylsilyl derivatives of sugar phosphates and related compounds by gas-chromatography and gas-chromatography mass-spectrometry. J Chromatogr 76:51–62

    Article  CAS  PubMed  Google Scholar 

  • Haunschild MD, Freisleben B, Takors R, Wiechert W (2005) Investigating the dynamic behavior of biochemical networks using model families. Bioinformatics 21:1617–1625

    Article  CAS  PubMed  Google Scholar 

  • Heijnen JJ (2005) Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng 91:534–545

    Article  CAS  PubMed  Google Scholar 

  • Higareda AE, Possani LD, Ramirez OT (1994) Metabolic and kinetic-studies of hybridomas in exponentially fed-batch cultures using t-flasks. Cytotechnology 15:73–86

    Article  CAS  PubMed  Google Scholar 

  • Hiller GW, Clark DS, Blanch HW (1993) Cell retention-chemostat studies of hybridoma cells-analysis of hybridoma growth and metabolism in continuous suspension-culture on serum-free medium. Biotechnol Bioeng 42:185–195

    Article  CAS  PubMed  Google Scholar 

  • Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6:4716–4723

    Article  CAS  PubMed  Google Scholar 

  • Hu WS, Aunins JG (1997) Large-scale mammalian cell culture. Curr Opin Biotechnol 8:148–153

    Article  CAS  PubMed  Google Scholar 

  • Hummel W, Riebel B (2002) (R)-specific alcohol dehydrogenase from lactobacillus with improved catalytic activity using a NAD+substrate. US Patent 6,413,750 B1

  • Iwatani S, van Dien S, Shimbo K, Kubota K, Kageyama N, Iwahata D, Miyano H, Hirayama K, Usuda Y, Shimizu K, Matsui K (2007) Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J Biotechnol 128:93–111

    Article  CAS  PubMed  Google Scholar 

  • Jensen NBS, Jokumsen KV,Villadsen J (1999) Determination of the phosphorylated sugars of the Embden–Meyerhoff–Parnas pathway in Lactococcus lactis using a fast sampling technique and solid phase extraction. Biotechnol Bioeng 63:356–362

    Article  CAS  PubMed  Google Scholar 

  • Kaderbhai NN, Broadhurst DI, Ellis DI, Goodacre R, Kell DB (2003) Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Compar Funct Genom 4:376–391

    Article  CAS  Google Scholar 

  • Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636

    Article  CAS  PubMed  Google Scholar 

  • Kataoka M, Yamamoto K, Kawabata H, Wada M, Kita K, Yanase H, Shimizu S (1999) Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 51:486–490

    Article  CAS  PubMed  Google Scholar 

  • Katona ZF, Sass P, Molnar-Perl I (1999) Simultaneous determination of sugars, sugar alcohols, acids and amino acids in apricots by gas chromatography-mass spectrometry. J Chromatogr A 847:91–102

    Article  CAS  Google Scholar 

  • Katz JE, Dumlao DS, Clarke S, Hau J (2004) A new technique (COMSPARI) to facilitate the identification of minor compounds in complex mixtures by GC/MS and LC/MS: tools for the visualization of matched datasets. J Am Soc Mass Spectrom 15:580–584

    Article  CAS  PubMed  Google Scholar 

  • Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339

    Article  CAS  PubMed  Google Scholar 

  • Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7:296–307

    Article  CAS  PubMed  Google Scholar 

  • Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3:557–565

    Article  CAS  PubMed  Google Scholar 

  • Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gill M, Karp PD (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33:D334–D337

    Article  CAS  PubMed  Google Scholar 

  • Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78:1272–1281

    Article  CAS  PubMed  Google Scholar 

  • Kopka J (2006) Current challenges and developments in GC-MS based metabolite profiling technology. J Biotechnol 124:312–322

    Article  CAS  PubMed  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Lafaye A, Labarre J, Tabet J-C, Ezan E, Junot C (2005) Liquid chromatography-mass spectrometry and <sup>15</sup>N metabolic labeling for quantitative metabolic profiling. Anal Chem 77:2026–2033

    Article  CAS  PubMed  Google Scholar 

  • Lanks KW (1987) End products of glucose and glutamine metabolism by L929 cells. J Biol Chem 262:10093–10097

    Article  CAS  PubMed  Google Scholar 

  • Lederberg J, McCray AT (2001) ‘Ome sweet’omics—a genealogical treasury of words. Scientist 15:8–8

    Google Scholar 

  • Lee YY, Yap MG, Hu WS, Wong KT (2003) Low-glutamine fed-batch cultures of 293-HEK serum-free suspension cells for adenovirus production. Biotechnol Prog 19:501–509

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358

    Article  CAS  PubMed  Google Scholar 

  • Liese A, Seelbach C, Wandrey C (2006) Industrial biotransformations, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Lilius EM, Multanen VM, Toivonen V (1979) Quantitative extraction and estimation of intracellular nicotinamide nucleotides of Escherichia coli. Anal Biochem 99:22–27

    Article  CAS  PubMed  Google Scholar 

  • Lindsley JE, Rutter J (2006) Whence cometh the allosterome? Proc Natl Acad Sci USA 103:10533–10535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Kimball E, Rabinowitz JD (2006) A high-performance liquid chromatography-tandem mass spectrometry method for quantitation of nitrogen-containing intracellular metabolites. J Am Soc Mass Spectrom 17:37–50

    Article  CAS  PubMed  Google Scholar 

  • Luo B, Groenke K, Takors R, Wandrey C, Oldiges M (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 1147:153–164

    Article  CAS  PubMed  Google Scholar 

  • Lutz NW, Franks SE, Frank MH, Pomer S, Hull WE (2005) Investigation of multidrug resistance in cultured human renal cell carcinoma cells by P-31-NMR spectroscopy and treatment survival assays. Margma 18:144–161

    CAS  Google Scholar 

  • Magnus JB, Hollwedel D, Oldiges M, Takors R (2006) Monitoring and modeling of the reaction dynamics in the valine/leucine synthesis pathway in Corynebacterium glutamicum. Biotechnol Prog 22:1071–1083

    Article  CAS  PubMed  Google Scholar 

  • Mailinger W, Baumeister A, Reuss M, Rizzi M (1998) Rapid and highly automated determination of adenine and pyridine nucleotides in extracts of Saccharomyces cerevisiae using a micro robotic sample preparation HPLC system. J Biotechnol 63:155–166

    Article  CAS  PubMed  Google Scholar 

  • Maranga L, Goochee CF (2006) Metabolism of PER.C6 (TM) cells cultivated under fed-batch conditions at low glucose and glutamine levels. Biotechnol Bioeng 94:139–150

    Article  CAS  PubMed  Google Scholar 

  • Marriott P, Shellie R (2002) Principles and applications of comprehensive two-dimensional gas chromatography. TrAC, Trends Anal Chem 21:573–583

    Article  CAS  Google Scholar 

  • Marx A, deGraaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111–129

    Article  CAS  PubMed  Google Scholar 

  • Mashego MR, Wu L, van Dam JC, Ras C, Vinke JL, van Winden WA, van Gulik WM, Heijnen JJ (2004) MIRACLE: mass isotopomer ratio analysis of U-C-13-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng 85:620–628

    Article  CAS  PubMed  Google Scholar 

  • Mashego MR, van Gulik WM, Vinke JL, Visser D, Heijnen JJ (2006) In vivo kinetics with rapid perturbation experiments in Saccharomyces cerevisiae using a second-generation BioScope. Metab Eng 8:370–383

    Article  CAS  PubMed  Google Scholar 

  • Mashego MR, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen JJ (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29:1–16

    Article  CAS  PubMed  Google Scholar 

  • Mazurek S, Michel A, Eigenbrodt E (1997) Effect of extracellular AMP on cell proliferation and metabolism of breast cancer cell lines with high and low glycolytic rates. J Biol Chem 272:4941–4952

    Article  CAS  PubMed  Google Scholar 

  • Mazurek S, Zwerschke W, Jansen-Durr P, Eigenbrodt E (2001) Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem J 356:247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer S, Noisommit-Rizzi N, Reuss M, Neubauer P (1999) Optimized analysis of intracellular adenosine and guanosine phosphates in Escherichia coli. Anal Biochem 271:43–52

    Article  CAS  PubMed  Google Scholar 

  • Miccheli AT, Miccheli A, Di Clemente R, Valerio M, Coluccia P, Bizzarri M, Conti F (2006) NMR-based metabolic profiling of human hepatoma cells in relation to cell growth by culture media analysis. Biochimica Et Biophysica Acta General Subjects 1760:1723–1731

    Article  CAS  Google Scholar 

  • Miller WM, Blanch HW, Wilke CR (2000) A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: effect of nutrient concentration, dilution rate, and pH. Biotechnol Bioeng 67:853–871 (Reprinted from Biotechnol Bioeng 32:947–965, 1988)

    Article  CAS  PubMed  Google Scholar 

  • Monique Piraud CV-SKPCEJ-PSDB (2005) Ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometric analysis of 76 underivatized amino acids of biological interest: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Rapid Commun Mass Spectrom 19:1587–1602

    Article  CAS  Google Scholar 

  • Mungur R, Glass ADM, Goodenow DB, Lightfoot DA (2005) Metabolite fingerprinting in transgenic Nicotiana tabacum altered by the Escherichia coli glutamate dehydrogenase gene. J Biomed Biotechnol 2005(2):198–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeau I, Jacob D, Perrier M, Kamen A (2000) 293SF metabolic flux analysis during cell growth and infection with an adenoviral vector. Biotechnol Prog 16:872–884

    Article  CAS  PubMed  Google Scholar 

  • Nasution U, van Gulik WM, Kleijn RJ, van Winden WA, Proell A, Heiinen JJ (2006) Measurement of intracellular metabolites of primary metabolism and adenine nucleotides in chemostat cultivated Penicillium chrysogenum. Biotechnol Bioeng 94:159–166

    Article  CAS  PubMed  Google Scholar 

  • Neidhardt FC, Umbarger HE (1996) Chemical composition of Escherichia coli. In: Neidhardt FC (ed) Escherichia coli and salmonella typhimurium—cellular and molecular biology. ASM, Washington, DC

    Google Scholar 

  • Neves AR, Ramos A, Nunes MC, Kleerebezem M, Hugenholtz J, de Vos WM, Almeida J, Santos H (1999) In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol Bioeng 64:200–212

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55:263–283

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Oliver S (2005) The next wave in metabolome analysis. Trends Biotech 23:544–546

    Article  CAS  Google Scholar 

  • Nobeli I, Ponstingl H, Krissinel EB, Thornton JM (2003) A structure-based anatomy of the E. coli metabolome. J Mol Biol 334:697–719

    Article  CAS  PubMed  Google Scholar 

  • Noble M, Sinha Y, Kolupaev A, Demin O, Earnshaw D, Tobin F, West J, Martin JD, Qiu CY, Liu WS, DeWolf WE, Tew D, Goryanin II (2006) The kinetic model of the shikimate pathway as a tool to optimize enzyme assays for high-throughput screening. Biotechnol Bioeng 95:560–573

    Article  CAS  PubMed  Google Scholar 

  • Noh K, Wahl A, Wiechert W (2006) Computational tools for isotopically instationary C-13 labeling experiments under metabolic steady state conditions. Metab Eng 8:554–577

    Article  PubMed  CAS  Google Scholar 

  • Noh K, Gronke K, Luo B, Takors R, Oldiges M,Wiechert W (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol 129:249–267

    Article  PubMed  CAS  Google Scholar 

  • Ogino H (1982) Biosynthesis of aromatic compounds: 13C NMR spectroscopy of whole Escherichia coli cells. Proc Natl Acad Sci USA 79:5828–5832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldiges M, Takors R (2005) Applying metabolic profiling techniques for stimulus-response experiments: chances and pitfalls. Adv Biochem Eng Biotechnol 92:173–196

    CAS  PubMed  Google Scholar 

  • Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R (2004) Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog 20:1623–1633

    Article  CAS  PubMed  Google Scholar 

  • Oldiges M, Noack S, Wahl A, Qeli E, Freisleben B, Wiechert W (2006) From enzyme kinetics to metabolic network modeling visualization tool for enhanced kinetic analysis of biochemical network models. Eng Life Sci 6:155–162

    Article  CAS  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    Article  CAS  PubMed  Google Scholar 

  • Ozturk SS, Riley MR, Palsson BO (1992) Effects of ammonia and lactate on hybridoma growth, metabolism and antibody production. Biotechnol Bioeng 39:418–431

    Article  CAS  PubMed  Google Scholar 

  • Pandor A, Eastham J, Beverley C, Chilcott J, Paisley S (2004) Clinical effectiveness and cost-effectiveness of neonatal screening for inborn errors of metabolism using tandem mass spectrometry: a systematic review. Health Technol Assess 8:1–121

    Article  Google Scholar 

  • Park SJ, Lee SY, Cho J, Kim TY, Lee JW, Park JH, Han MJ (2005) Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Appl Microbiol Biotechnol 68:567–579

    Article  CAS  PubMed  Google Scholar 

  • Peters J (1998) Dehydrogenases-characteristics, design of reaction conditions and applications. In: Rehm HJ, Reed G, Pühler A, Stadler P (eds) Biotechnology. Wiley-VCH, Weinheim

    Google Scholar 

  • Pissara PD, Nielsen J, Bazin MJ (1996) Pathway kinetics and metabolic control analysis of a high-yielding strain of Penicillium chrysogenum during fed batch cultivations. Biotechnol Bioeng 51:168–176

    Article  Google Scholar 

  • Plumb R, Castro-Perez J, Granger J, Beattie I, Joncour K, Wright A (2004) Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 18:2331–2337

    Article  CAS  PubMed  Google Scholar 

  • Raab RM, Tyo K, Stephanopoulos G (2005) Metabolic engineering, Volume 100 of Advances in Biochemical Engineering and Biotechnology. Springer, Berlin Heidelberg New York, p 1–17

    Google Scholar 

  • Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50

    Article  CAS  PubMed  Google Scholar 

  • Ramautar R, Demirci A, de Jong GJ (2006) Capillary electrophoresis in metabolomics. TrAC, Trends Anal Chem 25:455–466

    Article  CAS  Google Scholar 

  • Rashed MS (2001) Clinical applications of tandem mass spectrometry: ten years of diagnosis and screening for inherited metabolic diseases. J Chromatogr B-Anal Technol Biomed Life Sci 758:27–48

    Article  CAS  Google Scholar 

  • Ritter JB, Genzel Y, Reichl U (2006) High-performance anion-exchange chromatography using on-line electrolytic eluent generation for the determination of more than 25 intermediates from energy metabolism of mammalian cells in culture. J Chromatogr B-Anal Technol Biomed Life Sci 843:216–226

    Article  CAS  Google Scholar 

  • Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. 2. Mathematical model. Biotechnol Bioeng 55:592–608

    Article  CAS  PubMed  Google Scholar 

  • Rochfort S (2005) Metabolomics reviewed: a new “Omics” platform technology for systems biology and implications for natural products research. J Nat Products 68:1813–1820

    Article  CAS  Google Scholar 

  • Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier, Amsterdam New York Oxford

    Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142

    Article  CAS  PubMed  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133:84–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruijter GJG, Visser J (1996) Determination of intermediary metabolites in Aspergillus niger. J Microbiol Methods 25:295–302

    Article  CAS  Google Scholar 

  • Saito N, Robert M, Kitamura S, Baran R, Soga T, Mori H, Nishioka T, Tomita M (2006) Metabolomics approach for enzyme discovery. J Proteome Res 5:1979–1987

    Article  CAS  PubMed  Google Scholar 

  • Sauer U (2006) Metabolic networks in motion: C-13-based flux analysis. Mol Syst Biol 2, 62 DOI https://doi.org/10.1038/msb4100109

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer U, Boos W, Takors R, Weuster-Botz D (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Biochem 270:88–96

    Article  CAS  PubMed  Google Scholar 

  • Schaub J, Schiesling C, Reuss M, Dauner M (2006) Integrated sampling procedure for metabolome analysis. Biotechnol Prog 22:1434–1442

    Article  CAS  PubMed  Google Scholar 

  • Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. Febs Lett 579:1332–1337

    Article  CAS  PubMed  Google Scholar 

  • Schlotterbeck G, Ross A, Dieterle F, Senn H (2006) Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics 7:1055–1075

    Article  CAS  PubMed  Google Scholar 

  • Schmid G, Keller T (1992) Monitoring hybridoma metabolism in continuous suspension-culture at the intracellular level. 1. Steady-state responses to different glutamine feed concentrations. Cytotechnology 9:217–229

    Article  CAS  PubMed  Google Scholar 

  • Schomburg I, Chang A, Schomburg D (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30:47–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shellie RA (2005) Comprehensive two-dimensional gas chromatography-mass spectrometry and its use in high-resolution metabolomics. Aust J Chem 58:619–619

    Article  CAS  Google Scholar 

  • Shellie RA, Welthagen W, Zrostlikova J, Spranger J, Ristow M, Fiehn O, Zimmermann R (2005) Statistical methods for comparing comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry results: metabolomic analysis of mouse tissue extracts. J Chromatogr A 1086:83–90

    Article  CAS  PubMed  Google Scholar 

  • Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56:273–286

    Article  CAS  PubMed  Google Scholar 

  • Smilde AK, vanderWerf MJ, Bijlsma S, vanderWerff-vanderVat BJC, Jellema RH (2005) Fusion of mass spectrometry-based metabolomics data. Anal Chem 77:6729–6736

    Article  CAS  PubMed  Google Scholar 

  • Smits HP, Cohen A, Buttler T, Nielsen J, Olsson L (1998) Cleanup and analysis of sugar phosphates in biological extracts by using solid-phase extraction and anion-exchange chromatography with pulsed amperometric detection. Anal Biochem 261:36–42

    Article  CAS  PubMed  Google Scholar 

  • Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T (2002) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74:2233–2239

    Article  CAS  PubMed  Google Scholar 

  • Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2:488–494

    Article  CAS  PubMed  Google Scholar 

  • Staack RF, Varesio E, Hopfgartner G (2005) The combination of liquid chromatography/tandem mass spectrometry and chip-based infusion for improved screening and characterization of drug metabolites. Rapid Commun Mass Spectrom 19:618–626

    Article  CAS  PubMed  Google Scholar 

  • Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10:770–781

    Article  CAS  Google Scholar 

  • Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267

    Article  CAS  PubMed  Google Scholar 

  • Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  CAS  PubMed  Google Scholar 

  • Strelkov S, von Elstermann M, Schomburg D (2004) Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry. Biol Chem 385:853–861

    Article  CAS  PubMed  Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  CAS  PubMed  Google Scholar 

  • Tarr MA, Zhu J, Cole RB (2000) Atmospheric pressure ionization mass spectrometry. In: Meyers RA (ed) Encyclopedia of analytical chemistry, vol. 13. Wiley, Chichester, p 11597–11630

    Google Scholar 

  • Taymaz H, Mashego MR, vanWinden WA, van Gulik WM, Heijjnen JJ (2006) Evaluation of experimental protocols for metabolome analysis in Escherichia coli K-12 MG1655 (Poster contribution). In: Metabolic engineering VI conference, Nordwijkerhout, The Netherlands

  • Teleman A, Richard P, Toivari M, Penttilla M (1999) Identification and quantitation of phosphorus metabolites in yeast neutral pH extracts by nuclear magnetic resonance spectroscopy. Anal Biochem 272:71–79

    Article  CAS  PubMed  Google Scholar 

  • Theobald U, Mailinger W, Reuss M, Rizzi M (1993) In vivo analysis of glucose-induced fast changes in yeast adenine-nucleotide pool applying a rapid sampling technique. Anal Biochem 214:31–37

    Article  CAS  PubMed  Google Scholar 

  • Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. 1. Experimental observations. Biotechnol Bioeng 55:305–316

    Article  CAS  PubMed  Google Scholar 

  • Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem 301:298–307

    Article  CAS  PubMed  Google Scholar 

  • Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J Bacteriol 180:5109–5116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dam JC, Eman MR, Frank J, Lange HC, van Dedem GWK, Heijnen SJ (2002) Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection. Anal Chim Acta 460:209–218

    Article  Google Scholar 

  • van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. Bmc Genomics 7:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Winden WA, van Dam JC, Ras C, Kleijn RJ, Vinke JL, van Gulik WM, Heijnen JJ (2005) Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of C-13-labeled primary metabolites. Fems Yeast Res 5:559–568

    Article  PubMed  CAS  Google Scholar 

  • Vaseghi S, Baumeister A, Rizzi M, Reuss M (1999) In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab Eng 1:128–140

    Article  CAS  PubMed  Google Scholar 

  • Villas-Boas SG, Hojer-Pedersen J, Akesson M, Smedsgaard J, Nielsen J (2005) Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22:1155–1169

    Article  CAS  PubMed  Google Scholar 

  • Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24:613–646

    Article  CAS  PubMed  Google Scholar 

  • Visser D, van Zuylen GA, van Dam JC, Oudshoorn A, Eman MR, Ras C, van Gulik WM, Frank J, van Dedem GWK, Heijnen JJ (2002) Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous-pulse experiments. Biotechnol Bioeng 79:674–681

    Article  CAS  PubMed  Google Scholar 

  • Visser D, Schmid JW, Mauch K, Reuss M, Heijnen JJ (2004) Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics. Metab Eng 6:378–390

    Article  CAS  PubMed  Google Scholar 

  • Voit EO, Almeida J, Marino S, Lall R, Goel G, Neves AR, Santos H (2006) Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study. IEE Proc Syst Biol 153:286–298

    Article  CAS  Google Scholar 

  • Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62:887–900

    Article  CAS  PubMed  Google Scholar 

  • Wahl SA, Haunschild MD, Oldiges M, Wiechert W (2006) Unravelling the regulatory structure of biochemical networks using stimulus response experiments and large-scale model selection. IEE Proc Syst Biol 153:275–285

    Article  CAS  Google Scholar 

  • Walton AZ, Stewart JD (2004) Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells. Biotechnol Prog 20:403–411

    Article  CAS  PubMed  Google Scholar 

  • Wandrey C, Liese A, Kihumbu D (2000) Industrial biocatalysis: past, present, and future. Org Process Res Dev 4:286–290

    Article  CAS  Google Scholar 

  • Wang QZ, Wu CY, Chen T, Chen X, Zhao XM (2006) Integrating metabolomics into a systems biology framework to exploit metabolic complexity: strategies and applications in microorganisms. Appl Microbiol Biotechnol 70:151–161

    Article  CAS  PubMed  Google Scholar 

  • Weckbecker A, Hummel W (2004) Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP(+)-dependent alcohol dehydrogenase and NAD(+)-dependent formate dehydrogenase. Biotechnol Lett 26:1739–1744

    Article  CAS  PubMed  Google Scholar 

  • Welthagen W, Shellie RA, Spranger J, Ristow M, Zimmermann R, Fiehn O (2005) Comprehensive two dimensional gas chromatography-time of flight mass spectrometry, GCxGC-TOF for high resolution metabolomics: biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice. Metabolomics 1:65–73

    Article  CAS  Google Scholar 

  • Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74–92

    Article  CAS  PubMed  Google Scholar 

  • Wichmann R, Vasic-Racki D (2005) Cofactor regeneration at the lab scale. Adv Biochem Eng/Biotechnol 92:225–260

    CAS  Google Scholar 

  • Wiechert W (2001) C-13 metabolic flux analysis. Metab Eng 3:195–206

    Article  CAS  PubMed  Google Scholar 

  • Wiechert W (2002) Modeling and simulation: tools for metabolic engineering. J Biotechnol 94:37–63

    Article  CAS  PubMed  Google Scholar 

  • Wiechert W, Takors R (2003) Validation of metabolic models: concepts, tools and problems. In: WesterhoffB HV, Kholodenko N (eds) Metabolic engineering in a post genomic era. Horizon Bioscience, Wymondham

    Google Scholar 

  • Wiendahl C, Brandner JJ, Kuppers C, Luo B, Schygulla U, Noll T, Oldiges M (2007) A microstructure heat exchanger for quenching the metabolism of mammalian cells. Chem Eng Technol 30:322–328

    Article  CAS  Google Scholar 

  • Winkler H (1920) Verbeitung und Ursache der Parthenogenesis im Pflanzen und Tierreiche. Fischer Verlag, Jena

    Book  Google Scholar 

  • Wittmann C, Kromer JO, Kiefer P, Binz T, Heinzle E (2004) Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal Biochem 327:135–139

    Article  CAS  PubMed  Google Scholar 

  • Womersley C (1981) A micromethod for the extraction and quantitative-analysis of free carbohydrates in nematode tissue. Anal Biochem 112:182–189

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem 336:164–171

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Hua Q, Shimizu K (1999) Development of a kinetic model for l-lysine biosynthesis in Corynebacterium glutamicum and its application to metabolic control analysis. J Biosci Bioeng 88:393–403

    Article  CAS  PubMed  Google Scholar 

  • Zimmer D (2003) Introduction to quantitative liquid chromatography-tandem mass spectrometry (LC-MS-MS). Chromatographia 57:S325–S332

    Article  Google Scholar 

Download references

Acknowledgement

The authors are indebted to Prof. Dr. C. Wandrey for ongoing support and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Oldiges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oldiges, M., Lütz, S., Pflug, S. et al. Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 76, 495–511 (2007). https://doi.org/10.1007/s00253-007-1029-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1029-2

Keywords

Navigation