Applied Microbiology and Biotechnology

, Volume 76, Issue 5, pp 1173–1179 | Cite as

Quantification of anammox populations enriched in an immobilized microbial consortium with low levels of ammonium nitrogen and at low temperature

  • Bipin K. PathakEmail author
  • Futaba Kazama
  • Yasuhiro Tanaka
  • Kazuhiro Mori
  • Tatsuo Sumino
Environmental Biotechnology


Anaerobic ammonium oxidizing (anammox) bacteria present in microbial communities in two laboratory-scale upflow anoxic reactors supplied with small amounts of ammonium (<3 mg/l) at low temperature were detected and quantified. The reactors, operated at 20°C, were seeded with an immobilized microbial consortium (IMC) and anaerobic granules (AG) from an upflow anaerobic sludge blanket (UASB) treating brewery wastewater. Our results showed that complete ammonium and nitrite removal with greater than 92% total nitrogen removal efficiency was achieved in the reactor inoculated with both the IMC and AG, while that of the reactor inoculated with only the IMC was lower than 40%; enrichment was successful after the addition of AG. Quantitative fluorescence in situ hybridization (FISH) analysis confirmed that anammox bacteria were present only in the reactor inoculated with an IMC and AG. The copy number of the 16S-rRNA gene of the anammox bacteria calculated by most probable number-polymerase chain reaction (MPN-PCR) from the total DNA extracted from both reactors (2.5 × 104 copies/μg of DNA) was two orders lower than that of the domain bacteria (2.5 × 106 copies/μg of DNA). The results revealed that immobilized multiple seed sludges were optimal for anammox enrichment at low temperature and ammonium concentrations.


Anammox bacteria FISH Immobilized microbial consortium MPN-PCR 



The authors would like to acknowledge the University of Yamanashi, 21st Century Center of Excellence, for providing financial support and thank Saiki Yuko and Yukiko Hiraga for providing technical help during the experiments. Further, we thank Deb P. Jaisi for his help during the preparation of this manuscript.


  1. Abma WR, Schultz CE, Mulder JW, Loosdrecht MCM, Star WRL, Strous M, Tokutomi T (2006) Full-scale granular sludge anammox process. Proceeding of biofilm systems VI conference, Amsterdam, The Netherlands, pp 171–178Google Scholar
  2. Amann RI (1995) In situ identification of microorganisms by whole cell hybridization with rRNA targeted nucleic acid probes. In: Akkermans ADL, van Elas JD (eds) Molecular microbial ecology manual. Kluwer, London, pp 1–15Google Scholar
  3. American Public Health Association (1998) Standard methods for water and wastewater examination, 20th edn. APHA, AWWA, WEF, USAGoogle Scholar
  4. Carey CM, Lee H, Trevors JT (2006) Comparison of most probable number-PCR and most probable number-foci detection method for quantifying infectious Cryptosporidium parvum oocysts in environmental samples. J Microbiol Methods 67:363–372. DOI  10.1016/j.mimet.2006.04.007 CrossRefGoogle Scholar
  5. Daims H, Bruhl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444Google Scholar
  6. Diaz EE, Stams AJM, Amils R, Sanz JL (2006) Phenotypic properties and microbial diversity of methanogenic granules from a full scale upflow anaerobic sludge bed reactor from a full-scale anaerobic sludge bed reactor treating brewery wastewater. Appl Environ Microbiol 72(7):4942–4949CrossRefGoogle Scholar
  7. Egli K, Langer C, Siegrist HR, Zehnder AJM, van der Meer JR (2003) Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors. Appl Environ Microbiol 69(6):3213–3222CrossRefGoogle Scholar
  8. Hao X, van Loosdrecht MCM, Heijnen JJ, Qian Y (2002) Model-based evaluation of the behavior of the CANON process with variable temperature and inflow. Water Res 36:4839–4849CrossRefGoogle Scholar
  9. Inoue D, Wada K, Sei K, Ike M, Fujita M (2005) Comparative evaluation of quantitative polymerase chain reaction methods for routine enumeration of specific bacterial DNA in aquatic samples. World J Microbiol Biotechnol 21:1029–1035CrossRefGoogle Scholar
  10. Isaka K, Date Y, Sumino T, Yoshie S, Tsuneda S (2006) Growth characteristic of anaerobic ammonium-oxidizing bacteria in an anaerobic biological filtrated reactor. Appl Microbiol Biotechnol 70:47–52CrossRefGoogle Scholar
  11. Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M (2000) Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiol Ecol 32:129–141CrossRefGoogle Scholar
  12. Jetten MSM, Cirpus I, Kartal B, Van Niftrik L, Van de Pas-Schoonen KT, Sliekers O, Haaijer S, Van der Star W, Schmid M, Van de Vossenberg J, Schmidt I, Harhangi H, van Loosdrecht M, Kuenen JG, Op den Camp H, Strous M (2005) 1994–2004: 10 years of research on the anaerobic oxidation of ammonium. Biochem Soc Trans 33:119–123CrossRefGoogle Scholar
  13. Kartal B, Rattray J, Van Niftrik L, VanDeVossenberg J, Schmid M, Webb RI, Schouten S, Fuerst, JA, Sinninghe Damst’e JS, Jetten MSM, Strous M (2006) CandidatusAnammoxoglobus propionicus” gen. nov., sp. nov., a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 9(3):635–642. DOI  10.1016/j.syapm.2006.03.004 Google Scholar
  14. Klangduen P, Jurg K (1999) Study of factors affecting simultaneous nitrification and denitrification (SND). Water Sci Technol 39(6):61–68CrossRefGoogle Scholar
  15. Kohno T, Sei K, Nishino T, Fukunaga S, Furukawa K (2005) Survey of ‘Brocadia–Kuenenia’ organisms in wastewater treatment systems by MPN-PCR. Proceedings of international conference on microbial population dynamics in wastewater treatment plant July 17–20, Gold Coast, Australia (available in CD-ROM)Google Scholar
  16. Kowalchuk GA, Stephen JR (2001) Ammonia oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529CrossRefGoogle Scholar
  17. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jøgensen BB, Kuenen JG, Sinninghe Damste JS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611CrossRefGoogle Scholar
  18. Laanbrock HJ and Gerards S (1993) Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradsky grown in mixed continuous cultures. Arch Microbiol 159:453–459CrossRefGoogle Scholar
  19. Leenen EJTM, Boogert AA, van Lammeren AAM, Tramper J, Wijffels RH (1997) Dynamics of artificially immobilized Nitrosomonas europaea: effect of biomass decay. Biotechnol Bioeng 55(4):630–641CrossRefGoogle Scholar
  20. Nakano K, Iwasawa H, Ito O, Lee TJ, Matusmura M (2004) Improved simultaneous nitrification and denitrification in a single reactor by using 2 different immobilization carriers with specific transfer characteristics. Bioprocess Biosyst Eng 26:141–145CrossRefGoogle Scholar
  21. Neef A, Amann RI, Schlesner H, Schleifer KH (1998) Monitoring a widespread bacterial group: in situ detection of Planctomycetes with 16S-rRNA-targeted probes. Microbiology 144:3257–3266CrossRefGoogle Scholar
  22. Nielsen M, Bollmann A, Sliekers O, Jetten M, Schmid M, Strous M, Schmidt I, Larsen LH, Nielsen LP, Revsbech NP (2005) Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor. FEMS Microbiol Ecol 51:247–256CrossRefGoogle Scholar
  23. Oblinger JL, Koburger JA (1975) Understanding and teaching the most probable number technique. J Milk Food Technol 38(9):540–545Google Scholar
  24. Pathak BK, Kazama F, Saiki Y, Sumino T (2007) Presence and activity of anammox and denitrification process in low ammonium-fed bioreactors. Bioresour Technol 98(11):2201–2206CrossRefGoogle Scholar
  25. Saiki Y, Iwabuchi C, Katami A, Kitagawa Y (2002) Microbial analyses by fluorescence in situ hybridization of well-settled granular sludge in brewery wastewater treatment plants. J Biosci Bioeng 93:601–606Google Scholar
  26. Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger JW, Schleifer KH, Wagner M (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93–106Google Scholar
  27. Schmid MC, Maas B, Dapena A, van de Pas-Schoonen K, van de Vossenberg J, Kartal B, van Niftrik, L, Schmidt I, Cirpus I, Kuenen JG, Wagner M, Damste JSS, Kuypers M, Revsbech NP, Mendez R, Jetten MSM, Strous M (2005) Biomarkers for in situ detection of anaerobic ammonium-oxidizing (Anammox) bacteria. Appl Env Microbiol 71(4):1677–1684CrossRefGoogle Scholar
  28. Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 205–248Google Scholar
  29. Strous M, Kuenen JG, Jetten MSM (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65:3248–3250Google Scholar
  30. Tal Y, Watts JEM, Schreier HJ (2006) Anaerobic ammonium-oxidizing (anammox) Bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system. Appl Environ Microbiol 72(4):2896–2904CrossRefGoogle Scholar
  31. Third KA, Paxman J, Schmid M, Strous M, Jetten MSM, Cord-Ruwisch R (2005) Enrichment of anammox from activated sludge and its application in the CANON process. Microb Ecol 49:236–244CrossRefGoogle Scholar
  32. Tuschima I, Kindaichi T, Ohabe S (2007) Quantification of anaerobic ammonium oxidising bacteria in enrichment cultures by real-time PCR. Water Res 41:785–794CrossRefGoogle Scholar
  33. Van Loosdrecht MCM, Hao X, Jetten MSM, Abma W (2004) Use of Anammox in urban wastewater treatment. Water Sci Technol Water Supply 4(1):87–94Google Scholar
  34. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribo-somal DNA amplification for phylogenetic study. J Bacteriol 173:697–703Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Bipin K. Pathak
    • 1
    Email author
  • Futaba Kazama
    • 2
  • Yasuhiro Tanaka
    • 2
  • Kazuhiro Mori
    • 2
  • Tatsuo Sumino
    • 3
  1. 1.Department of Environmental Science and EngineeringKathmandu UniversityKavreNepal
  2. 2.Center of ExcellenceUniversity of YamanashiKofuJapan
  3. 3.Matsudo Research LaboratoryHitachi Plant Technologies Ltd.ChibaJapan

Personalised recommendations