Applied Microbiology and Biotechnology

, Volume 76, Issue 2, pp 309–320 | Cite as

Potential and capabilities of hydroxynitrile lyases as biocatalysts in the chemical industry

  • Thomas Purkarthofer
  • Wolfgang Skranc
  • Christian Schuster
  • Herfried Griengl
Mini-Review

Abstract

The application of hydroxynitrile lyases (HNLs) as catalysts for the stereoselective condensation of HCN with carbonyl compounds has been reported as early as 1908. This enzymatic C–C bond coupling reaction furnishes enantiopure cyanohydrins which serve as versatile bifunctional building blocks for chemical synthesis. Screening of natural sources led to the discovery of both (R)- and (S)-selective HNLs, and several distinctly different classes of these enzymes with substantial differences concerning sequence, structure, and mechanism have been found. Especially during the last two centuries, HNLs have been developed into valuable biocatalysts, which can be produced in recombinant form by overexpression in microbial hosts, resulting in the implementation of industrial processes utilizing these enzymes. Recently, protein engineering in combination with in silico methods gave rise to the development of a tailor-made HNL for large-scale manufacturing of a specific target cyanohydrin.

References

  1. Asano Y, Tamura K, Doi N, Ueatrongchit T, H-Kittikun A, Ohmiya T (2005) Screening for new hydroxynitrilases from plants. Biosci Biotechnol Biochem 69:2349–2357CrossRefGoogle Scholar
  2. Banavali R, Chang MY, Fitzwater SJ, Mukkamala R (2002) Thermal hazards screening study of the reactions between hydrogen cyanide and sulfuric acid and investigations of their chemistry. Ind Eng Chem Res 41:145–152CrossRefGoogle Scholar
  3. Bauer M, Griengl H, Steiner W (1999) Parameters influencing stability and activity of a S-hydroxynitrile lyase from Hevea brasiliensis in two-phase systems. Enzyme Microb Technol 24:514–522CrossRefGoogle Scholar
  4. Breuer M, Hauer B (2003) Carbon–carbon coupling in biotransformation. Curr Opin Biotechnol 14:570–576CrossRefGoogle Scholar
  5. Breuer M, Ditrich K, Habicher T, Hauer B, Keßeler M, Stürmer R, Zelinsky T (2004) Industrial methods for the production of optically active intermediates. Angw Chem Int Ed Engl 43:788–824CrossRefGoogle Scholar
  6. Brunel J-M, Holmes IP (2004) Chemically catalyzed asymmetric cyanohydrin syntheses. Angew Chem Int Ed Engl 43:2752–2778CrossRefGoogle Scholar
  7. Brussee J, Roos EC, van der Gen A (1988) Bio-organic synthesis of optically active cyanohydrins and acyloins. Tetrahedron Lett 29:4485–4488CrossRefGoogle Scholar
  8. Cabirol FL, Hanefeld U, Sheldon RA (2006) Immobilized hydroxynitrile lyases for enantioselective synthesis of cyanohydrins: sol–gels and cross-linked enzyme aggregates. Adv Synth Catal 348:1645–1654CrossRefGoogle Scholar
  9. Carey JS, Laffan D, Thomson C, Williams MT (2006) Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem 4:2337–2347CrossRefGoogle Scholar
  10. Chmura A, van der Kraan GM, Kielar F, van Langen LM, van Rantwijk F, Sheldon RA (2006) Cross-linked aggregates of the hydroxynitrile lyase from Manihot esculenta: highly active and robust biocatalysts. Adv Synth Catal 348:1655–1661CrossRefGoogle Scholar
  11. Danieli B, Barra C, Carrea G, Riva S (1996) Oxynitrilase-catalyzed transformation of substituted aldehydes: the case of (±)-2-phenylpropionaldehyde and (±)-3-phenylbutyraldehyde. Tetrahedron Asymmetry 7:1675–1682CrossRefGoogle Scholar
  12. Daußmann T, Rosen TC, Dünkelmann P (2006) Oxidoreductases and hydroxynitrile lyases: complementary enzymatic technologies for chiral alcohols. Eng Life Sci 6:125–129CrossRefGoogle Scholar
  13. Dreveny I, Gruber K, Glieder A, Thompson A, Kratky C (2001) The hydroxynitrile lyase from almond: a lyase that looks like an oxidoreductase. Structure 9:803–815CrossRefGoogle Scholar
  14. Dreveny I, Kratky C, Gruber K (2002) The active site of hydroxynitrile lyase from Prunus amygdalus: modeling studies provide new insights into the mechanism of cyanogenesis. Protein Sci 11:292–300CrossRefGoogle Scholar
  15. Effenberger F, Stelzer U (1991) Synthesis and stereoselective reactions of (R)-α-sulfonyloxynitriles. Angew Chem Int Ed Engl 30:873–874, Angew Chem 103:866–867CrossRefGoogle Scholar
  16. Effenberger F, Stelzer U (1995) A convenient preparation of 2-substituted (S)-aziridines. Tetrahedron Asymmetry 6:283–286CrossRefGoogle Scholar
  17. Effenberger F, Kremser A, Stelzer U (1996) A convenient synthesis of (S)-2-azidonitriles, (S)-2-aminonitriles and (S)-1,2-diamines. Tetrahedron Asymmetry 7:607–618CrossRefGoogle Scholar
  18. Effenberger F, Gutterer B, Jäger J (1997) Stereoselective synthesis of (1R)- and (1R,2S)-1-aryl-2-alkylamino alcohols from (R)-cyanohydrins. Tetrahedron Asymmetry 8:459–467CrossRefGoogle Scholar
  19. Effenberger F, Förster S, Wajant H (2000) Hydroxynitrile lyases in stereoselective catalysis. Curr Opin Biotechnol 11:532–539CrossRefGoogle Scholar
  20. Fechter MH, Griengl H (2002) Enzymatic synthesis of cyanohydrins. In: Drauz K, Waldmann H (eds) Enzyme catalysis in organic synthesis. Wiley, Weinheim, pp 974–989Google Scholar
  21. Fechter MH, Griengl H (2004) Hydroxynitrile lyases: biological sources and application as biocatalysts. Food Technol Biotechnol 42:287–294Google Scholar
  22. Ferrer M, Martinez-Abarca F, Golyshin PN (2005) Mining genomes and ‘metagenomes’ for novel catalysts. Curr Opin Biotechnol 16:588–593CrossRefGoogle Scholar
  23. Förster S, Roos J, Effenberger F, Wajant H, Sprauer A (1996) The first recombinant hydroxynitrile lyase and its application in the synthesis of (S)-cyanohydrins. Angew Chem Int Ed Engl 35:437–439, Angew Chem 108:493–494CrossRefGoogle Scholar
  24. Gaisberger RP, Fechter MH, Griengl H (2004) The first hydroxynitrile lyase catalysed cyanohydrin formation in ionic liquids. Tetrahedron Asymmetry 15:2959–2963CrossRefGoogle Scholar
  25. Gaucher A, Ollivier J, Salaün J (1991) Diastereoselective preparation of cyclopropane amino acids: synthesis of norcoronamic acid. Synlett 151–153Google Scholar
  26. Gerrits PJ, Willeman WF, Straathof AJJ, Heijnen JJ, Brussee J, van der Gen A (2001) Mass transfer limitation as a tool to enhance the enantiomeric excess in the enzymatic synthesis of chiral cyanohydrins. J Mol Catal B Enzym 15:111–121CrossRefGoogle Scholar
  27. Glieder A, Weis R, Skranc W, Poechlauer P, Dreveny I, Majer S, Wubbolts M, Schwab H, Gruber K (2003) Comprehensive step-by-step engineering of an (R)-hydroxynitrile lyase for large-scale asymmetric synthesis. Angew Chem Int Ed Engl 42:4815–4818, Angew Chem 115:4963–4966CrossRefGoogle Scholar
  28. Gregory RJH (1999) Cyanohydrins in nature and the laboratory: biology, preparations and synthetic applications. Chem Rev 99:3649–3682CrossRefGoogle Scholar
  29. Griengl H, Schwab H, Fechter M (2000) The synthesis of chiral cyanohydrins by oxynitrilases. Trends Biotechnol 18:252–256CrossRefGoogle Scholar
  30. Gröger H (2001) Enzymatic routes to enantiomerically pure aromatic α-hydroxy carboxylic acids: a further example for the diversity of biocatalysis. Adv Synth Catal 343:547–558CrossRefGoogle Scholar
  31. Gruber K, Kratky C (2004) Biopolymers for biocatalysis: structure and catalytic mechanism of hydroxynitrile lyases. J Polym Sci A Polym Chem 42:479–486CrossRefGoogle Scholar
  32. Gruber K, Gartler G, Krammer B, Schwab H, Kratky C (2004) Reaction mechanism of hydroxynitrile lyases of the α/β-hydrolase superfamily. J Biol Chem 279:20501–20510CrossRefGoogle Scholar
  33. Hanefeld U, Li Y, Sheldon RA, Maschmeyer T (2000) CAL-B catalyzed enantioselective synthesis of cyanohydrins—a facile route to versatile building blocks. Synlett 12:1775–1776Google Scholar
  34. Hasslacher M, Schall M, Hayn M, Bona R, Rumbold K, Luckl J, Griengl H, Kohlwein SD, Schwab H (1997) High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr Purif 11:61–71CrossRefGoogle Scholar
  35. Hernández L, Luna H, Ruíz-Terán F, Vázquez A (2004) Screening for hydroxynitrile lyase activity in crude preparations of some edible plants. J Mol Catal B Enzym 30:105–108CrossRefGoogle Scholar
  36. Hughes J, Decarvalho JPC, Hughes MA (1994) Purification, characterization, and cloning of α-hydroxynitrile lyase from cassava (Manihot esculenta Crantz). Arch Biochem Biophys 311:496–502CrossRefGoogle Scholar
  37. Inagaki M, Hiratake J, Nishioka T, Oda J (1992) One-pot synthesis of optically active cyanohydrin acetates from aldehydes via lipase-catalyzed kinetic resolution coupled with in situ formation and racemization of cyanohydrins. J Org Chem 57:5643–5649CrossRefGoogle Scholar
  38. Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67:289–298CrossRefGoogle Scholar
  39. Johnson DV, Zabelinskaja-Mackova AA, Griengl H (2000) Oxynitrilases for asymmetric C–C bond formation. Curr Opin Chem Biol 4:103–109CrossRefGoogle Scholar
  40. Kimura M, Kuboki A, Sugai T (2002) Chemo-enzymatic synthesis of enantiomerically pure (R)-2-naphthylmethoxyacetic acid. Tetrahedron Asymmetry 13:1059–1068CrossRefGoogle Scholar
  41. Konigsberger K, Prasad K, Repič O (1999) The synthesis of (R)- and (S)-α-trifluoromethyl-α-hydroxycarboxylic acids via enzymatic resolutions. Tetrahedron Asymmetry 10:679–687CrossRefGoogle Scholar
  42. Krieble VK, Wieland WA (1921) The properties of oxynitrilase. J Am Chem Soc 43:164–175CrossRefGoogle Scholar
  43. Lauble H, Förster S, Miehlich B, Wajant H, Effenberger F (2001) Structure of hydroxynitrile lyase from Manihot esculenta in complex with substrates acetone and chloroacetone: implications for the mechanism of cyanogenesis. Acta Crystallogr 57:194–200Google Scholar
  44. Lauble H, Miehlich B, Förster S, Wajant H, Effenberger F (2002) Crystal structure of hydroxynitrile lyase from Sorghum bicolor in complex with the inhibitor benzoic acid: a novel cyanogenic enzyme. Biochemistry 41:12043–12050CrossRefGoogle Scholar
  45. Leresche JE, Meyer H-P (2006) Chemocatalysis and biocatalysis (biotransformation): some thoughts of a chemist and of a biotechnologist. Org Process Res Dev 10:572–580CrossRefGoogle Scholar
  46. Liu Z, Weis R, Glieder A (2004) Enzymes from higher eukaryotes for industrial biocatalysis. Food Technol Biotechnol 42:237–249Google Scholar
  47. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nature Rev 3:510–516CrossRefGoogle Scholar
  48. Lu Y, Miet C, Kunesch N, Poisson JE (1993) A simple total synthesis of naturally occurring hydroxy-amino acids by enzymatic kinetic resolution. Tetrahedron Asymmetry 4:893–902CrossRefGoogle Scholar
  49. Menéndez E, Brieva R, Rebolledo F, Gotor V (1995) Optically active (S)-ketone- and (R)-aldehyde-cyanohydrins via an (R)-oxynitrilase-catalysed transcyanation. Chemoenzymatic synthesis of 2-cyanotetrahydrofuran and 2-cyanotetrahydropyran. J Chem Soc Chem Commun 10:989–990CrossRefGoogle Scholar
  50. Monterde MI, Nazabadioko S, Robolledo F, Brieva R, Gotor V (1999) Chemoenzymatic synthesis of azacycloalkan-3-ols. Tetrahedron Asymmetry 10:3449–3455CrossRefGoogle Scholar
  51. Monterde MI, Brieva R, Gotor V (2001) Stereocontrolled chemoenzymatic synthesis of 2,3-disubstituted piperidines. Tetrahedron Asymmetry 12:525–528CrossRefGoogle Scholar
  52. Nanda S, Kato Y, Asano Y (2006) PmHNL catalyzed synthesis of (R)-cyanohydrins derived from aliphatic aldehydes. Tetrahedron Asymmetry 17:735–741CrossRefGoogle Scholar
  53. North M (1993) Catalytic asymmetric cyanohydrin synthesis. Synlett 807–820Google Scholar
  54. North M (2003) Synthesis and applications of non-racemic cyanohydrins. Tetrahedron Asymmetry 14:147–176CrossRefGoogle Scholar
  55. Oku J-I, Inoue S (1981) Asymmetric cyanohydrin synthesis catalyzed by a synthetic cyclic dipeptide. J Chem Soc Chem Commun 229–230Google Scholar
  56. Paizs C, Tähtinen P, Lundell K, Poppe L, Irimie F-D, Kanerva LT (2003) Preparation of novel phenylfuran-based cyanohydrin esters: lipase-catalysed kinetic and dynamic resolution. Tetrahedron Asymmetry 14:1895–1904CrossRefGoogle Scholar
  57. Patel RN (2004) Biocatalytic synthesis of chiral pharmaceutical intermediates. Food Technol Biotechnol 42:305–325Google Scholar
  58. Pöchlauer P (1998) Synthesis of homochiral cyanohydrins in an industrial environment: hydroxynitrile lyases offer new options. Chim Oggi 16:15–19Google Scholar
  59. Poechlauer P, Skranc W, Wubbolts M (2004) The large-scale biocatalytic synthesis of enantiopure cyanohydrins. In: Blaser U, Schmidt E (eds) Asymmetric catalysis on industrial scale: challenges, approaches and solutions. Wiley, Weinheim, pp 151–164Google Scholar
  60. Purkarthofer T, Skranc W, Weber H, Griengl H, Wubbolts M, Scholz G, Pöchlauer P (2004) One-pot chemoenzymatic synthesis of protected cyanohydrins. Tetrahedron 60:735–739CrossRefGoogle Scholar
  61. Purkarthofer T, Pabst T, van den Broek C, Griengl H, Maurer O, Skranc W (2006a) Large-scale synthesis of (R)-2-amino-1-(2-furyl)ethanol via a chemoenzymatic approach. Org Process Res Dev 10:618–621CrossRefGoogle Scholar
  62. Purkarthofer T, Gruber K, Gruber-Khadjawi M, Waich K, Skranc W, Mink D, Griengl H (2006b) A biocatalytic Henry reaction—the hydroxynitrile lyase from Hevea brasiliensis also catalyzes nitroaldol reactions. Angew Chem Int Ed Engl 45:3454–3456, Angew Chem 118:3532–3535CrossRefGoogle Scholar
  63. Rosenthaler L (1908) Durch Enzyme bewirkte asymmetrische Synthesen. Biochem Z 14:238–253Google Scholar
  64. Schmid A, Hollmann F, Park JB, Bühler B (2002) The use of enzymes in the chemical industry in Europe. Curr Opin Biotechnol 13:359–366CrossRefGoogle Scholar
  65. Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425–435CrossRefGoogle Scholar
  66. Schoemaker H, Mink D, Wubbolts MG (2003) Dispelling the myths—biocatalysis in industrial synthesis. Science 299:1694–1697CrossRefGoogle Scholar
  67. Sharma M, Sharma NN, Bhalla TC (2005) Hydroxynitrile lyases: at the interface of biology and chemistry. Enzyme Microb Technol 37:279–294CrossRefGoogle Scholar
  68. Stelzer U, Effenberger F (1993) Preparation of (S)-fluoronitriles. Tetrahedron Asymmetry 4:161–164CrossRefGoogle Scholar
  69. Straathof JJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556CrossRefGoogle Scholar
  70. Sukumaran J, Hanefeld U (2005) Enantioselective C–C bond synthesis catalysed by enzymes. Chem Soc Rev 34:530–542CrossRefGoogle Scholar
  71. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222CrossRefGoogle Scholar
  72. Tian S-K, Deng L (2001) A highly enantioselective chiral Lewis base-catalyzed asymmetric cyanation of ketones. J Am Chem Soc 123:6195–6196CrossRefGoogle Scholar
  73. Trummler K, Wajant H (1997) Molecular cloning of acetone cyanohydrin lyase from flax (Linum usitatissimum). Definition of a novel class of hydroxynitrile lyases. J Biol Chem 272:4770–4774CrossRefGoogle Scholar
  74. Trummler K, Roos J, Schwaneberg U, Effenberger F, Förster S, Pfizenmaier K, Wajant H (1998) Expression of the Zn2+-containing hydroxynitrile lyase from flax (Linum usitatissimum) in Pichia pastoris—utilization of the recombinant enzyme for enzymatic analysis and site-directed mutagenesis. Plant Sci 139:19–27CrossRefGoogle Scholar
  75. van Langen LM, van Rantwijk F, Sheldon RA (2003) Enzymatic hydrocyanation of a sterically hindered aldehyde. Optimization of a chemoenzymatic procedure for (R)-2-chloromandelic acid. Org Process Res Dev 7:828–831CrossRefGoogle Scholar
  76. van Langen LM, Selassa RP, van Rantwijk F, Sheldon RA (2005) Cross-linked aggregates of (R)-oxynitrilase: a stable, recyclable biocatalyst for enantioselective hydrocyanation. Org Lett 7:327–329CrossRefGoogle Scholar
  77. Vänttinen E, Kanerva LT (1995) Combination of the lipase-catalysed resolution with the Mitsunobu esterification in one pot. Tetrahedron Asymmetry 6:1779–1786CrossRefGoogle Scholar
  78. Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38:11–36CrossRefGoogle Scholar
  79. Veum L, Hanefeld U, Pierre A (2004) The first encapsulation of hydroxynitrile lyase from Hevea brasiliensis in a sol–gel matrix. Tetrahedron 60:10419–10425CrossRefGoogle Scholar
  80. Wagner UG, Hasslacher M, Griengl H, Schwab H, Kratky C (1996) The crystal structure of the hydroxynitrile lyase from the rubber tree Hevea brasiliensis suggests that this enzyme is structurally and mechanistically related to α/β hydrolases. Structure 4:811–822CrossRefGoogle Scholar
  81. Wajant H, Effenberger F (1996) Hydroxynitrile lyases of higher plants. Biol Chem 377:611–617Google Scholar
  82. Wandrey C, Liese A, Kihumbu D (2000) Industrial biocatalysis: past, present and future. Org Process Res Dev 4:286–290CrossRefGoogle Scholar
  83. Weis R, Poechlauer P, Bona R, Skranc W, Luiten R, Wubbolts M, Schwab H, Glieder A (2004) Biocatalytic conversion of unnatural substrates by recombinant almond R-HNL isoenzyme 5. J Mol Catal B Enzym 29:211–218CrossRefGoogle Scholar
  84. Weis R, Gaisberger R, Skranc W, Gruber K, Glieder A (2005) Carving the active site of almond R-HNL for increased enantioselectivity. Angew Chem Int Ed Engl 44:4700–4704, Angew Chem 117: 4778–4782CrossRefGoogle Scholar
  85. Willeman WF, Gerrits PJ, Hanefeld U, Brussee J, Straathof AJJ, van der Gen A, Heijnen JJ (2002) Development of a process model to describe the synthesis of (R)-mandelonitrile by Prunus amygdalus hydroxynitrile lyase in an aqueous–organic biphasic reactor. Biotechnol Bioeng 77:239–247CrossRefGoogle Scholar
  86. Woodley JM (2006) Choice of biocatalyst form for scalable processes. Biochem Soc Trans 34:301–303CrossRefGoogle Scholar
  87. Yazbeck DR, Martinez CA, Hu S, Tao J (2004) Challenges in the development of an efficient enzymatic process in the pharmaceutical industry. Tetrahedron Asymmetry 15:2757–2763CrossRefGoogle Scholar
  88. Zagrobelny M, Bak S, Rasmussen AV, Jørgensen B, Naumann CM, Møller BL (2004) Cyanogenic glucosides and plant–insect interactions. Phytochemistry 65:293–306CrossRefGoogle Scholar
  89. Zandbergen P, Brussee J, van der Gen A (1992) Stereoselective synthesis of β-hydroxy-α-amino acids from chiral cyanohydrins. Tetrahedron Asymmetry 3:769–774CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Thomas Purkarthofer
    • 1
    • 2
    • 3
  • Wolfgang Skranc
    • 4
  • Christian Schuster
    • 4
  • Herfried Griengl
    • 1
    • 2
  1. 1.Research Centre Applied BiocatalysisGrazAustria
  2. 2.c/o Institute of Organic ChemistryGrazAustria
  3. 3.VTU-Engineering GmbHGrambach/GrazAustria
  4. 4.DSM Fine Chemicals Austria NfG GmbH & Co KGR&D Center LinzLinzAustria

Personalised recommendations