Advertisement

Applied Microbiology and Biotechnology

, Volume 76, Issue 3, pp 553–559 | Cite as

Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343

  • Cornelia Gätgens
  • Ursula Degner
  • Stephanie Bringer-Meyer
  • Ute HerrmannEmail author
Biotechnological Products and Process Engineering

Abstract

The genus Gluconobacter is well known for its rapid and incomplete oxidation of a wide range of substrates. Therefore, Gluconobacter oxydans especially is used for several biotechnological applications, e.g., the efficient oxidation of glycerol to dihydroxyacetone (DHA). For this reaction, G. oxydans is equipped with a membrane-bound glycerol dehydrogenase that is also described to oxidize sorbitol, gluconate, and arabitol. Here, we demonstrated the impact of sldAB overexpression on glycerol oxidation: Beside a beneficial effect on the transcript level of the sldB gene, the growth on glycerol as a carbon source was significantly improved in the overexpression strains (OD 2.8 to 2.9) compared to the control strains (OD 2.8 to 2.9). Furthermore, the DHA formation rate, as well as the final DHA concentration, was affected so that up to 350 mM of DHA was accumulated by the overexpression strains when 550 mM glycerol was supplied (control strain: 200 to 280 mM DHA). Finally, we investigated the effect on sldAB overexpression on the G. oxydans transcriptome and identified two genes involved in glycerol metabolism, as well as a regulator of the LysR family.

Keywords

Gluconobacter oxydans Glycerol Dihydroxyacetone Glycerol dehydrogenase Sorbitol dehydrogenase 

Notes

Acknowledgement

We would like to thank Armin Ehrenreich and Marc Hoffmeister for the provision of the G. oxydans microarrays and a large number of excellent suggestions during the establishment of G. oxydans microarray analysis in our lab.

References

  1. Adachi O, Moonmangmee D, Shinagawa E, Toyama H, Yamada M, Matsushita K (2003) New quinoproteins in oxidative fermentation. Biochim Biophys Acta 164:10–17Google Scholar
  2. Ameyama M, Shinagawa E, Matsushita K, Adachi O (1985) Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agric Biol Chem 49:1001–1010Google Scholar
  3. An G, Friesen JD (1980) The nucleotide sequence of tufB and four nearby tRNA structural genes of Escherichia coli. Gene 12:33–39CrossRefGoogle Scholar
  4. Battey AS, Schaffner DW (2001) Modelling bacterial spoilage in cold-filled ready to drink beverages by Acinetobacter calcoaceticus and Gluconobacter oxydans. J Appl Microbiol 91:237–247CrossRefGoogle Scholar
  5. Bauer R, Katsikis N, Varga S, Hekmat D (2005) Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process. Bioprocess Biosyst Eng 5:37–43CrossRefGoogle Scholar
  6. Bories A, Claret C, Soucaille P (1991) Kinetic study and optimisation of the production of dihydroxyacetone from glycerol using Gluconobacter oxydans. Process Biochem 26:243–248CrossRefGoogle Scholar
  7. Bremus C (2006) Untersuchungen zur Bildung der Vitamin C-Vorstufe 2-Keto-l-Gulonsäure mit. Gluconobacter oxydans Ph.D. thesis, Heinrich Heine-Universität, DüsseldorfGoogle Scholar
  8. Buchert J, Viikari L (1988) Oxidative d-xylose metabolism of G. oxydans. Appl Microbiol Biotechnol 29:375–379CrossRefGoogle Scholar
  9. Claret C, Salmon JM, Romieu C, Bories A (1994) Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl Microbiol Biotechnol 41:359–365CrossRefGoogle Scholar
  10. Deppenmeier U, Hoffmeister M, Prust C (2002) Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol 59:1513–1533Google Scholar
  11. Elfari M, Ha SW, Bremus C, Merfort M, Khodaverdi V, Herrmann U, Sahm H, Görisch H (2005) A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-d-gluconic acid. Appl Microbiol Biotechnol 66:668–674CrossRefGoogle Scholar
  12. Gillis M, de Ley J (1980) Intra - and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int J Syst Bacteriol 30:7–27CrossRefGoogle Scholar
  13. Gupta A, Singh VK, Qazi GN, Kumar A (2001) Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol 3:445–456Google Scholar
  14. Hall AN (1963) Miscellaneous oxidative transformations. In: Rainbow C, Rose AH (eds) Biochemistry of industrial microorganisms. Academic Press, London, p 607Google Scholar
  15. Hekmat D, Bauer R, Fricke J (2003) Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst Eng 26:109–116CrossRefGoogle Scholar
  16. Herrmann U, Sahm H (2005) Application of Gluconobacter oxydans for biotechnologically relevant reactions. In: Durán EM, Barredo JL (eds) Microorganisms for industrial enzymes and biocontrol. Research Signpost 37/661(2), Trivandrum, pp 163–180Google Scholar
  17. Holst O, Lundbäck H, Mattiasson B (1985) Hydrogen peroxide as an oxygen source for immobilized Gluconobacter oxydans converting glycerol to dihydroxyacetone. Appl Microbiol Biotechnol 22:383–388CrossRefGoogle Scholar
  18. Keliang G, Dongzhi W (2006) Asymmetric oxidation by Gluconobacter oxydans. Appl Microbiol Biotechnol 70:135–139CrossRefGoogle Scholar
  19. Kulakova AN, Kulakov LA, Akulenko NV, Ksenzenko VN, Hamilton JT, Quinn JP (2001) Structural and functional analysis of the phosphonoacetate hydrolase (phnA) gene region in Pseudomonas fluorescens 23F. J Bacteriol 183:3268–3275CrossRefGoogle Scholar
  20. Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H (2003) Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of l-valin. Appl Environ Microbiol 69:2521–2532CrossRefGoogle Scholar
  21. Löw R, Rausch T (1994) Sensitive, nonradioactive northern blots using alkaline transfer of total RNA and PCR-amplified biotinylated probes. Biotechniques 17:1027–1030Google Scholar
  22. Matsushita K, Toyoma H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301CrossRefGoogle Scholar
  23. Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) 5-Keto-d-gluconate production is catalysed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69:1959–1966CrossRefGoogle Scholar
  24. Merfort M, Herrmann U, Ha SW, Elfari M, Bringer-Meyer S, Görisch H, Sahm H (2006a) Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-d-gluconic acid accumulation. Biotechnol J 1:556–563CrossRefGoogle Scholar
  25. Merfort M, Herrmann U, Bringer-Meyer S, Sahm H (2006b) High-yield 5-keto-d-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Appl Microbiol Biotechnol 73:443–451CrossRefGoogle Scholar
  26. Ming YZ, Di X, Gomez-Sanchez EP, Gomez-Sanchez CE (1994) Improved downward capillary transfer for blotting of DNA and RNA. Biotechniques 16:58–59Google Scholar
  27. Pepplar HJ, Perlman D (eds) (1979) Microbial technology, 2nd edn, vol II. Academic Press, LondonGoogle Scholar
  28. Prust C (2004) Entschlüsselung des Genoms von Gluconobacter oxydans 621H-einem Bakterium von industriellem Interesse. Ph.D. thesis, Georg-August Universität, GöttingenGoogle Scholar
  29. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200CrossRefGoogle Scholar
  30. SaitoY, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M, Hosoda J, Shimomura K (1997) Cloning genes coding for l-sorbose and l-sorbosone dehydrogenase from Gluconobacter oxydans and microbial production of 2-keto-l-gulonate, a precursor of l-ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microbiol 63:454–460Google Scholar
  31. Saito Y, Ishii Y, Hayashi H, Yoshikawa K, Noguchi Y, Yoshida S, Soeda S, Yoshida M (1998) Direct fermentation of 2-keto-l-gulonic acid in recombinant Gluconobacter oxydans. Biotechnol Bioeng 58:309–315CrossRefGoogle Scholar
  32. Salusjärvi T, Povelainen M, Hvorslev N, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Neustroev KN, Kalkkinen N, Miasnikov AN (2004) Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain. Appl Microbiol Biotechnol 65:306–314CrossRefGoogle Scholar
  33. Schedel M (2000) Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, a key reaction in the industrial synthesis of 1-deoxynojirimycin. In: Kelly DR (eds) Biotransformations I. Biotechnology, vol 8b. Wiley-VCH, Weinheim, pp 296–308Google Scholar
  34. Svitel J, Sturdik E (1994) Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans. J Ferment Technol 78:351–355Google Scholar
  35. Tkac J, Navratil M, Sturdik E, Gemeiner P (2001) Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor. Enzyme Microb Technol 28:383–388CrossRefGoogle Scholar
  36. Wei S, Song Q, Wei D (2007) Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone. Prep Biochem Biotechnol 37:67–76CrossRefGoogle Scholar
  37. Wendisch VF (2003) Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104:273–285CrossRefGoogle Scholar
  38. Wethmar M, Deckwer WD (1999) Semisynthetic culture medium for growth and dihydroxyacetone production by Gluconobacter oxydans. Biotechnol Tech 13:283–287CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Cornelia Gätgens
    • 1
  • Ursula Degner
    • 1
  • Stephanie Bringer-Meyer
    • 1
  • Ute Herrmann
    • 1
    Email author
  1. 1.Forschungszentrum Jülich GmbHInstitut für Biotechnologie 1JülichGermany

Personalised recommendations