Chemistry, physiological properties, and microbial production of hydroxycitric acid

Abstract

The tropical plants Garcinia cambogia and Hibiscus subdariffa produce hydroxycitric acid (HCA), of which the absolute configurations are (2S,3S) and (2S,3R), respectively. (2S,3S)-HCA is an inhibitor of ATP-citrate lyase, which is involved in fatty acid synthesis. (2S,3R)-HCA inhibits pancreatic α-amylase and intestinal α-glucosidase, leading to a reduction in carbohydrate metabolism. In this study, we review current knowledge on the structure, biological occurrence, and physiological properties of HCA. The availability of HCA is limited by the restricted habitat of its source plants and the difficulty of stereoselective organic synthesis. Hence, in our recent study, thousands of microbial strains were screened and finally two bacterial strains were, for the first time, found to produce trace amounts of HCA. The HCA variants produced were the Hibiscus-type (2S,3R) enantiomer. Subsequent genome shuffling rapidly generated a mutant population with improved HCA yield relative to the parent strain of bacteria. These bacteria are a potential alternative source of natural HCA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Bischoff H (1994) Pharmacology of α-glucosidase inhibition. Eur J Clin Invest 24:3–10

    CAS  Article  Google Scholar 

  2. Boll PM, Sorensen E, Balieu E (1969) Naturally occurring lactones and lactames. III. The absolute configuration of the hydroxycitric acid lactones: Hibiscus acid and garcinia acid. Acta Chem Scand 23:286–293

    CAS  Article  Google Scholar 

  3. Brämer CO, Steinbüchel A (2001) The methylcitric acid pathway in Ralstonia eutropha: new genes identified involved in propionate metabolism. Microbiology 147:2203–2214

    Article  Google Scholar 

  4. Brock M, Darley D, Textor S, Buckel W (2001) 2-Methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulans. Eur J Biochem 268:3577–3586

    CAS  Article  Google Scholar 

  5. Cheema-Dhadli S, Halperin ML, Leznoff CC (1973) Inhibition of enzymes which interact with citrate by (−)-hydroxycitrate and 1,2,3-tricarboxybenzene. Eur J Biochem 38:98–102

    CAS  Article  Google Scholar 

  6. Coppola GM, Schuster HF (1997) Chiral α-hydroxyacids in enantioselective synthesis. Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  7. Ewering C, Heuser F, Benölken J, Brämer C, Steinbüchel A (2006) Metabolic engineering of strains of Ralstonia eutropha and Pseudomonas putida for biotechnological production of 2-methylcitric acid. Metab Eng 8:587–602

    CAS  Article  Google Scholar 

  8. Gerike U, Hough DW, Russell NJ, Dyall-Smith ML, Danson MJ (1998) Citrate synthase and 2-methylcitrate synthase: structural, functional and evolutionary relationships. Microbiology 144:929–935

    CAS  Article  Google Scholar 

  9. Ghosh AK, Koltun ES, Bilcer G (2001) Tartaric acid and tartarates in the synthesis of bioactive molecules. Synthesis 9:1281–1301

    Article  Google Scholar 

  10. Guthrie RW, Hamilton JG, Kierstead RW, Miller ON, Sullivan AC (1976) U. S. Patent 3966772

  11. Griebel C (1939) Hibiscus “flowers”, a drug used in the preparation of food and drink, its principal component a new acid of fruit acid character (hibiscus acid). Zeit Untersuch Lebensmitt 77:561–571

    CAS  Article  Google Scholar 

  12. Griebel C (1942) The constitution and detection of hibiscus acid ((+)-allohydroxycitric acid lactone). Zeit Untersuch Lebensmitt 83:481–486

    CAS  Article  Google Scholar 

  13. Hansawasdi C, Kawabata J, Kasai T (2000) α-amylase inhibitors from roselle (Hibiscus sabdariffa Linn.) tea. Biosci Biotechnol Biochem 64:1041–1043

    CAS  Article  Google Scholar 

  14. Hansawasdi C, Kawabata J, Kasai T (2001) Hibiscus acid as an inhibitor of starch digestion in the Caco-2 cell model system. Biosci Biotechnol Biochem 65:2087–2089

    CAS  Article  Google Scholar 

  15. Hida H, Yamada T, Yamada Y (2005) Production of hydroxycitric acid by microorganisms. Biosci Biotechnol Biochem 69:1555–1561

    CAS  Article  Google Scholar 

  16. Hida H, Yamada T, Yamada Y (2006) Absolute configuration of hydroxycitric acid in microorganisms. Biosci Biotechnol Biochem 70:1972–1974

    CAS  Article  Google Scholar 

  17. Hida H, Yamada T, Yamada Y (2007) Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl Microbiol Biotechnol 73:1387–1393

    CAS  Article  Google Scholar 

  18. Hoffman GE, Andres H, Weiss L, Kreisel C, Sander R (1980) Properties and organ distribution of ATP citrate (pro-3S)-lyase. Biochim Biophys Acta 620:151–158

    Article  Google Scholar 

  19. Ibnusaud I, Thomas PT, Rani RN, Sasi PV, Beena T, Hisham A (2002) Chiral γ-butyrolactones related to optically active 2-hydroxycitric acids. Tetrahedron 58:4887–4892

    CAS  Article  Google Scholar 

  20. Jena BS, Jayaprakasha GK, Singh RP, Sakariah KK (2002) Chemistry and biochemistry of (−)-hydroxycitric acid from Garcinia. J Agric Food Chem 50:10–22

    CAS  Article  Google Scholar 

  21. Jenkins DJ, Taylor RH, Goff DV, Fielden H, Misiewicz JJ, Sarson DL, Bloom SR, Alberti KG (1981) Scope and specificity of acarbose in slowing carbohydrate absorption in man. Diabetes 30:951–954

    CAS  Article  Google Scholar 

  22. Kasai T, Kawabata J, Hanswasdi C (2000) Japan Kokai Tokkyo Koho 239164

  23. Karaffa L, Kubicek CP (2003) Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl Microbiol Biotechnol 61:189–196

    CAS  Article  Google Scholar 

  24. Kotera U, Umehara K, Kodama T, Yamada K (1972) Isolation method of highly tartaric acid producing mutants of Gluconobacter suboxydans. Agric Biol Chem 36:1307–1313

    CAS  Article  Google Scholar 

  25. Lewis YS, Neelakantan S (1965) (−)-Hydroxycitric acid—the principal acid in the fruits of Garcinia cambogia Desr. Phytochemistry 4:619–625

    CAS  Article  Google Scholar 

  26. Lewis YS (1969) Isolation and properties of hydroxycitric acid. Methods Enzymol 13:613–619

    CAS  Article  Google Scholar 

  27. Loe YC, Bergeron N, Rodriguez N, Schwarz JM (2001) Gas chromatography/mass spectrometry method to quantify blood hydroxycitrate concentration. Anal Biochem 292:148–154

    CAS  Article  Google Scholar 

  28. Lowenstein JM (1971) Effect of (−)-hydroxycitrate on fatty acid synthesis by rat liver in vivo. J Biol Chem 246:629–632

    CAS  PubMed  Google Scholar 

  29. Lowenstein JM, Brunengraber H (1981) Hydroxycitrate. Methods Enzymol 72:486–497

    CAS  Article  Google Scholar 

  30. Mattey M (1992) The production of organic acids. Crit Rev Biotechnol 12:87–132

    CAS  Article  Google Scholar 

  31. Milsom PE (1987) Organic acids by fermentation, especially citric acid. Food Biotechnol (Lond) 1:273–307

    CAS  Article  Google Scholar 

  32. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, del Cardayré SB (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    CAS  Article  Google Scholar 

  33. Rao RN, Sakariah KK (1988) Lipid-lowering and antiobesity effect of (−)-hydroxycitric acid. Nutr Res 8:209–212

    CAS  Article  Google Scholar 

  34. Sullivan AC, Triscari J, Hamilton JC, Miller ON (1974) Effects of (−)-hydroxycitrate upon the accumulation of lipid in rat. II. Appetite. Lipids 9:129–134

    CAS  Article  Google Scholar 

  35. Sullivan AC, Singh M, Srere PA, Glusker JP (1977) Reactivity and inhibitor potential of hydroxycitrate isomers with citrate synthase, citrate lyase, and ATP citrate lyase. J Biol Chem 252:7583–7590

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tabuchi T, Serizawa N (1975) The production of 2-methylcitric acid from odd-carbon n-alkanes by a mutant of Candida lipolytica. Agric Biol Chem 39:1049–1054

    CAS  Google Scholar 

  37. Tattersall R (1993) α-glucosidase inhibition as an adjunct to the treatment of type 1 diabetes. Diabet Med 10:688–693

    CAS  Article  Google Scholar 

  38. Tsao GT, Cao NJ, Du J, Gong CS (1999) Production of multifunctional organic acids from renewable resources. Adv Biochem Eng Biotechnol 65:243–280

    CAS  PubMed  Google Scholar 

  39. Watson JA, Fang M, Lowenstein JM (1969) Tricarballylate and hydroxycitrate: substrate and inhibitor of ATP: citrate oxaloacetate lyase. Arch Biochem Biophys 135:209–217

    CAS  Article  Google Scholar 

  40. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are cooperating within the “High-Tech Research Center” Project for Private Universities on Evolution of Green Science for Quality Improvement of Environmental and Health: matching fund subsidy from Ministry of Education, Culture, Sports, Science and Technology (MEXT), 2004–2008.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Yamada.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yamada, T., Hida, H. & Yamada, Y. Chemistry, physiological properties, and microbial production of hydroxycitric acid. Appl Microbiol Biotechnol 75, 977–982 (2007). https://doi.org/10.1007/s00253-007-0962-4

Download citation

Keywords

  • Hydroxycitric acid
  • Microbial production
  • Genome shuffling
  • Streptomyces