Abstract
Bees are specifically subjected to intimate contacts with transgenic plants due to their feeding activities on pollen. In this study, the probability and ecological risk of a gene transfer from pollen to gut bacteria of bees was investigated with larvae of Apis mellifera (honeybee), Bombus terrestris (bumblebee), and Osmia bicornis (red mason bee), all collected at a flowering transgenic oilseed rape field. The plants were genetically engineered with the pat-gene, conferring resistance against glufosinate (syn. phosphinothricin), a glutamine-synthetase inhibitor in plants and microorganisms. Ninety-six bacterial strains were isolated and characterized by 16S rRNA gene sequencing, revealing that Firmicutes represented 58% of the isolates, Actinobacteria 31%, and Proteobacteria 11%, respectively. Of all isolates, 40% were resistant to 1 mM glufosinate, and 11% even to 10 mM. Resistant phenotypes were found in all phylogenetic groups. None of the resistant phenotypes carried the recombinant pat-gene in its genome. The threshold of detecting gene transfer in this field study was relatively insensitive due to the high background of natural glufosinate resistance. However, the broad occurrence of glufosinate-resistant bacteria from different phylogenetic groups suggests that rare events of horizontal gene transfer will not add significantly to natural bacterial glufosinate resistance.
Similar content being viewed by others
References
Ahmad I, Malloch D (1995) Interaction of soil microflora with the bioherbicide phosphinothricin. Agric Ecosyst Environ 54:165–174
Bartsch K, Tebbe CC (1991) Initial steps in the degradation of phosphinothricin (glufosinate) by soil bacteria. Appl Environ Microbiol 55:711–716
Bayer E, Gugel KH, Hagele K, Hagenmaier H, Jessipow S, König WA, Zähner H (1972) Metabolic products of microorganisms. 98. Phosphinothricin and phosphinothricyl-alanyl-analine. Helv Chim Acta 55:224–239
Bertolla F, Frostegard A, Brito B, Nesme X, Simonet P (1999) During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Mol Plant Microb Interact 12:467–472
Bruinsma M, Kowalchuk GA, van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37:329–337
Chowdhury EH, Kuribara H, Hino A, Sultana P, Mikami O, Shimada N, Guruge KS, Saito M, Nakajima Y (2003) Detection of corn intrinsic and recombinant DNA fragments and Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified corn Bt11. J Anim Sci 81:2546–2551
Colanduoni JA, Villafranca JJ (1986) Inhibition of Escherichia coli glutamine-synthetase by phosphinothricin. Bioorganic Chem 14:163–169
Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment—Part II. Overview of ecological risk assessment. Plant J 33:19–46
de Vries J, Wackernagel W (1998) Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol Gen Genet 257:606–613
de Vries J, Wackernagel W (2004) Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil 266:91–104
Deni J, Message B, Chioccioli M, Tepfer D (2005) Unsuccessful search for DNA transfer from transgenic plants to bacteria in the intestine of the tobacco horn worm Manduca sexta. Transgenic Res 14:207–215
Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92
Franco AR, Lopez-Siles FJ, Cardenas J (1996) Resistance to phosphinothricin (glufosinate) and its utilization as a nitrogen source by Chlamydomonas reinhardtii. Appl Environ Microbiol 62:3834–3839
Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl Environ Microbiol 64:1550–1554
Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195
Heinemann JA, Traavik T (2004) Problems in monitoring horizontal gene transfer in field trials of transgenic plants. Nat Biotechnol 22:1105–1109
Hess N, Ulrich A, Hoffmann T (2002) Insertionsspezifische Nachweisverfahren für transgene Pflanzenlinien unter Anwendung inverser PCR. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz 45:626–633
Hinnebusch BJ, Rosso ML, Schwan TG, Carniel E (2002) High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol Microbiol 46:349–354
Hoerlein G (1994) Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. Rev Environ Contam Toxicol 138:73–145
Hoffmann A, Thimm T, Dröge M, Moore ERB, Munch JC, Tebbe CC (1998) Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collembola). Appl Environ Microbiol 64:2652–2659
Hohlweg U, Doerfler W (2001) On the fate of plant or other foreign genes upon the uptake in food or after intramuscular injection in mice. Mol Genet Genomics 265:225–233
Jarrett P, Stephenson M (1990) Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Appl Environ Microbiol 56:1608–1614
Jojima Y, Mihara Y, Suzuki S, Yokozeki K, Yamanaka S, Fudou R (2004) Saccharibacter floricola gen. nov., sp nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 54:2263–2267
Jonas DA, Elmadfa I, Engel KH, Heller KJ, Kozianowski G, König A, Müller D, Narbonne JF, Wackernagel W, Kleiner J (2001) Safety considerations of DNA in food. Ann Nutr Metab 45:235–254
Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl Environ Microbiol 68:3345–3351
Kim YT, Kim SE, Park KD, Kang TH, Lee YM, Lee SH, Moon JS, Kim SU (2005) Investigation of possible horizontal gene transfer from the leaf tissue of transgenic potato to soil bacteria. J Microbiol Biotechnol 15:1130–1134
Kondo Y, Shomura T, Ogawa Y, Tsuruoka T, Watanabe K, Totsukawa K, Suzuki T, Moriyama C, Yoshida J, Inouye S, Niida T (1973) Studies on a new antibiotic SF-1293. Isolation and physico-chemical and biological characterization of SF-1293 substances. Sci Rep Meiji Seika 13:34–41
Leason M, Cunliffe D, Parkin D, Lea PJ, Miflin BJ (1982) Inhibition of pea leaf glutamine-synthetase by methionine sulfoximine, phosphinothricin and other glutamate analogs. Phytochemistry 21:855–857
Lopez-Siles FJ, Cardenas J, Franco AR (1999) Biochemical and genetic analysis of a Chlamydomonas reinhardtii mutant devoid of chloroplastic glutamine synthetase activity. Planta 207:436–441
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371
Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8:258–272
Morel M, Buee M, Chalot M, Brun A (2006) NADP-dependent glutamate dehydrogenase: a dispensable function in ectomycorrhizal fungi. New Phytol 169:179–189
Müllner H, Eckes P, Donn G (1993) Engineering crop resistance to the naturally occurring glutamine-synthetase inhibitor phosphinothricin. ACS Symposium Series, pp 524:38–47
Netherwood T, Martin-Orue SM, O’Donnell AG, Gockling S, Graham J, Mathers JC, Gilbert HJ (2004) Assessing the survival of transgenic plant DNA in the human gastrointestinal tract. Nat Biotechnol 22:204–209
Nielsen KM (1998) Barriers to horizontal gene transfer by natural transformation in soil bacteria. APMIS Acta Pathol Microbiol Immunol Scand 106:77–84
Nielsen KM, Townsend JP (2004) Monitoring and modeling horizontal gene transfer. Nat Biotechnol 22:1110–1114
Nielsen KM, Bones AM, Smalla K, van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria—a rare event? FEMS Microbiol Rev 22:79–103
Omura S, Hinotozawa K, Imamura N, Murata M (1984) The structure of phosalacine, a new herbicidal antibiotic containing phosphinothricin. J Antibiot (Tokyo) 37:939–940
Pierre J, Marsault D, Genecque E, Renard M, Champolivier J, Pham-Delegue MH (2003) Effects of herbicide-tolerant transgenic oilseed rape genotypes on honey bees and other pollinating insects under field conditions. Entomol Exp Appl 108:159–168
Pline WA, Lacy GH, Stromberg V, Hatzios KK (2001) Antibacterial activity of the herbicide glufosinate on Pseudomonas syringae pathovar glycinea. Pestic Biochem Physiol 71:48–55
Quinn JP, Heron JK, McMullan G (1993) Glufosinate tolerance and utilization by soil and aquatic bacteria. Proc R Ir Acad Biol Environ 93B:181–186
Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
Schmalenberger A, Schwieger F, Tebbe CC (2001) Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl Environ Microbiol 67:3557–3563
Simonet P (2000) An evaluation of the possibility of transferring DNA from GM crops to soil bacteria. Ocl Ol Corps Gras Lipides 7:320–323
Snow AA, Andow DA, Gepts P, Hallerman EM, Power A, Tiedje JM, Wolfenbarger LL (2005) Genetically engineered organisms and the environment: current status and recommendations. Ecol Appl 15:377–404
Strauch E, Wohlleben W, Pühler A (1988) Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Streptomyces lividans and Escherichia coli. Gene 63:65–74
Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109
Tebbe CC, Reber HH (1989) Utilization of the herbicide phosphinothricin as a nitrogen source by soil bacteria. Appl Microbiol Biotechnol 29:103–105
Vinnemeier J, Dröge Laser W, Pistorius EK, Broer I (1995) Purification and partial characterization of the Streptomyces viridochromogenes Tü494 phosphinothricin-N-acetyltransferase mediating resistance to the herbicide phosphinothricin in transgenic plants. Z Naturforsch 50:796–805
Wehrmann A, VanVliet A, Opsomer C, Botterman J, Schulz A (1996) The similarities of bar and pat-gene products make them equally applicable for plant engineers. Nat Biotechnol 14:1274–1278
Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
Acknowledgments
We gratefully acknowledge the support of Martina Sick and Stefan Kühne, as well as other members of the Institute for Integrated Plant Protection, Federal Biological Research Centre for Agriculture and Forestry, Kleinmachnow, Germany. We thank Anja B. Dohrmann and Dina Führmann for discussion. The work was financially supported by the Federal Ministry for Research and Education, BMBF (Research Grant 0312628E).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mohr, K.I., Tebbe, C.C. Field study results on the probability and risk of a horizontal gene transfer from transgenic herbicide-resistant oilseed rape pollen to gut bacteria of bees. Appl Microbiol Biotechnol 75, 573–582 (2007). https://doi.org/10.1007/s00253-007-0846-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-007-0846-7