Applied Microbiology and Biotechnology

, Volume 75, Issue 3, pp 573–582 | Cite as

Field study results on the probability and risk of a horizontal gene transfer from transgenic herbicide-resistant oilseed rape pollen to gut bacteria of bees

Applied Genetics and Molecular Biotechnology

Abstract

Bees are specifically subjected to intimate contacts with transgenic plants due to their feeding activities on pollen. In this study, the probability and ecological risk of a gene transfer from pollen to gut bacteria of bees was investigated with larvae of Apis mellifera (honeybee), Bombus terrestris (bumblebee), and Osmia bicornis (red mason bee), all collected at a flowering transgenic oilseed rape field. The plants were genetically engineered with the pat-gene, conferring resistance against glufosinate (syn. phosphinothricin), a glutamine-synthetase inhibitor in plants and microorganisms. Ninety-six bacterial strains were isolated and characterized by 16S rRNA gene sequencing, revealing that Firmicutes represented 58% of the isolates, Actinobacteria 31%, and Proteobacteria 11%, respectively. Of all isolates, 40% were resistant to 1 mM glufosinate, and 11% even to 10 mM. Resistant phenotypes were found in all phylogenetic groups. None of the resistant phenotypes carried the recombinant pat-gene in its genome. The threshold of detecting gene transfer in this field study was relatively insensitive due to the high background of natural glufosinate resistance. However, the broad occurrence of glufosinate-resistant bacteria from different phylogenetic groups suggests that rare events of horizontal gene transfer will not add significantly to natural bacterial glufosinate resistance.

Keywords

Gut bacteria Bees Glufosinate Horizontal gene transfer Field study pat-gene 

References

  1. Ahmad I, Malloch D (1995) Interaction of soil microflora with the bioherbicide phosphinothricin. Agric Ecosyst Environ 54:165–174CrossRefGoogle Scholar
  2. Bartsch K, Tebbe CC (1991) Initial steps in the degradation of phosphinothricin (glufosinate) by soil bacteria. Appl Environ Microbiol 55:711–716Google Scholar
  3. Bayer E, Gugel KH, Hagele K, Hagenmaier H, Jessipow S, König WA, Zähner H (1972) Metabolic products of microorganisms. 98. Phosphinothricin and phosphinothricyl-alanyl-analine. Helv Chim Acta 55:224–239CrossRefGoogle Scholar
  4. Bertolla F, Frostegard A, Brito B, Nesme X, Simonet P (1999) During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Mol Plant Microb Interact 12:467–472Google Scholar
  5. Bruinsma M, Kowalchuk GA, van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37:329–337Google Scholar
  6. Chowdhury EH, Kuribara H, Hino A, Sultana P, Mikami O, Shimada N, Guruge KS, Saito M, Nakajima Y (2003) Detection of corn intrinsic and recombinant DNA fragments and Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified corn Bt11. J Anim Sci 81:2546–2551Google Scholar
  7. Colanduoni JA, Villafranca JJ (1986) Inhibition of Escherichia coli glutamine-synthetase by phosphinothricin. Bioorganic Chem 14:163–169CrossRefGoogle Scholar
  8. Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment—Part II. Overview of ecological risk assessment. Plant J 33:19–46CrossRefGoogle Scholar
  9. de Vries J, Wackernagel W (1998) Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol Gen Genet 257:606–613CrossRefGoogle Scholar
  10. de Vries J, Wackernagel W (2004) Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil 266:91–104CrossRefGoogle Scholar
  11. Deni J, Message B, Chioccioli M, Tepfer D (2005) Unsuccessful search for DNA transfer from transgenic plants to bacteria in the intestine of the tobacco horn worm Manduca sexta. Transgenic Res 14:207–215CrossRefGoogle Scholar
  12. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92CrossRefGoogle Scholar
  13. Franco AR, Lopez-Siles FJ, Cardenas J (1996) Resistance to phosphinothricin (glufosinate) and its utilization as a nitrogen source by Chlamydomonas reinhardtii. Appl Environ Microbiol 62:3834–3839Google Scholar
  14. Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl Environ Microbiol 64:1550–1554Google Scholar
  15. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195Google Scholar
  16. Heinemann JA, Traavik T (2004) Problems in monitoring horizontal gene transfer in field trials of transgenic plants. Nat Biotechnol 22:1105–1109CrossRefGoogle Scholar
  17. Hess N, Ulrich A, Hoffmann T (2002) Insertionsspezifische Nachweisverfahren für transgene Pflanzenlinien unter Anwendung inverser PCR. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz 45:626–633CrossRefGoogle Scholar
  18. Hinnebusch BJ, Rosso ML, Schwan TG, Carniel E (2002) High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol Microbiol 46:349–354CrossRefGoogle Scholar
  19. Hoerlein G (1994) Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. Rev Environ Contam Toxicol 138:73–145Google Scholar
  20. Hoffmann A, Thimm T, Dröge M, Moore ERB, Munch JC, Tebbe CC (1998) Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collembola). Appl Environ Microbiol 64:2652–2659Google Scholar
  21. Hohlweg U, Doerfler W (2001) On the fate of plant or other foreign genes upon the uptake in food or after intramuscular injection in mice. Mol Genet Genomics 265:225–233CrossRefGoogle Scholar
  22. Jarrett P, Stephenson M (1990) Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Appl Environ Microbiol 56:1608–1614Google Scholar
  23. Jojima Y, Mihara Y, Suzuki S, Yokozeki K, Yamanaka S, Fudou R (2004) Saccharibacter floricola gen. nov., sp nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 54:2263–2267CrossRefGoogle Scholar
  24. Jonas DA, Elmadfa I, Engel KH, Heller KJ, Kozianowski G, König A, Müller D, Narbonne JF, Wackernagel W, Kleiner J (2001) Safety considerations of DNA in food. Ann Nutr Metab 45:235–254CrossRefGoogle Scholar
  25. Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl Environ Microbiol 68:3345–3351CrossRefGoogle Scholar
  26. Kim YT, Kim SE, Park KD, Kang TH, Lee YM, Lee SH, Moon JS, Kim SU (2005) Investigation of possible horizontal gene transfer from the leaf tissue of transgenic potato to soil bacteria. J Microbiol Biotechnol 15:1130–1134Google Scholar
  27. Kondo Y, Shomura T, Ogawa Y, Tsuruoka T, Watanabe K, Totsukawa K, Suzuki T, Moriyama C, Yoshida J, Inouye S, Niida T (1973) Studies on a new antibiotic SF-1293. Isolation and physico-chemical and biological characterization of SF-1293 substances. Sci Rep Meiji Seika 13:34–41Google Scholar
  28. Leason M, Cunliffe D, Parkin D, Lea PJ, Miflin BJ (1982) Inhibition of pea leaf glutamine-synthetase by methionine sulfoximine, phosphinothricin and other glutamate analogs. Phytochemistry 21:855–857CrossRefGoogle Scholar
  29. Lopez-Siles FJ, Cardenas J, Franco AR (1999) Biochemical and genetic analysis of a Chlamydomonas reinhardtii mutant devoid of chloroplastic glutamine synthetase activity. Planta 207:436–441CrossRefGoogle Scholar
  30. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371CrossRefGoogle Scholar
  31. Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8:258–272CrossRefGoogle Scholar
  32. Morel M, Buee M, Chalot M, Brun A (2006) NADP-dependent glutamate dehydrogenase: a dispensable function in ectomycorrhizal fungi. New Phytol 169:179–189CrossRefGoogle Scholar
  33. Müllner H, Eckes P, Donn G (1993) Engineering crop resistance to the naturally occurring glutamine-synthetase inhibitor phosphinothricin. ACS Symposium Series, pp 524:38–47Google Scholar
  34. Netherwood T, Martin-Orue SM, O’Donnell AG, Gockling S, Graham J, Mathers JC, Gilbert HJ (2004) Assessing the survival of transgenic plant DNA in the human gastrointestinal tract. Nat Biotechnol 22:204–209CrossRefGoogle Scholar
  35. Nielsen KM (1998) Barriers to horizontal gene transfer by natural transformation in soil bacteria. APMIS Acta Pathol Microbiol Immunol Scand 106:77–84Google Scholar
  36. Nielsen KM, Townsend JP (2004) Monitoring and modeling horizontal gene transfer. Nat Biotechnol 22:1110–1114CrossRefGoogle Scholar
  37. Nielsen KM, Bones AM, Smalla K, van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria—a rare event? FEMS Microbiol Rev 22:79–103Google Scholar
  38. Omura S, Hinotozawa K, Imamura N, Murata M (1984) The structure of phosalacine, a new herbicidal antibiotic containing phosphinothricin. J Antibiot (Tokyo) 37:939–940Google Scholar
  39. Pierre J, Marsault D, Genecque E, Renard M, Champolivier J, Pham-Delegue MH (2003) Effects of herbicide-tolerant transgenic oilseed rape genotypes on honey bees and other pollinating insects under field conditions. Entomol Exp Appl 108:159–168CrossRefGoogle Scholar
  40. Pline WA, Lacy GH, Stromberg V, Hatzios KK (2001) Antibacterial activity of the herbicide glufosinate on Pseudomonas syringae pathovar glycinea. Pestic Biochem Physiol 71:48–55CrossRefGoogle Scholar
  41. Quinn JP, Heron JK, McMullan G (1993) Glufosinate tolerance and utilization by soil and aquatic bacteria. Proc R Ir Acad Biol Environ 93B:181–186Google Scholar
  42. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  43. Schmalenberger A, Schwieger F, Tebbe CC (2001) Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl Environ Microbiol 67:3557–3563CrossRefGoogle Scholar
  44. Simonet P (2000) An evaluation of the possibility of transferring DNA from GM crops to soil bacteria. Ocl Ol Corps Gras Lipides 7:320–323Google Scholar
  45. Snow AA, Andow DA, Gepts P, Hallerman EM, Power A, Tiedje JM, Wolfenbarger LL (2005) Genetically engineered organisms and the environment: current status and recommendations. Ecol Appl 15:377–404Google Scholar
  46. Strauch E, Wohlleben W, Pühler A (1988) Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Streptomyces lividans and Escherichia coli. Gene 63:65–74CrossRefGoogle Scholar
  47. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefGoogle Scholar
  48. Tebbe CC, Reber HH (1989) Utilization of the herbicide phosphinothricin as a nitrogen source by soil bacteria. Appl Microbiol Biotechnol 29:103–105CrossRefGoogle Scholar
  49. Vinnemeier J, Dröge Laser W, Pistorius EK, Broer I (1995) Purification and partial characterization of the Streptomyces viridochromogenes Tü494 phosphinothricin-N-acetyltransferase mediating resistance to the herbicide phosphinothricin in transgenic plants. Z Naturforsch 50:796–805Google Scholar
  50. Wehrmann A, VanVliet A, Opsomer C, Botterman J, Schulz A (1996) The similarities of bar and pat-gene products make them equally applicable for plant engineers. Nat Biotechnol 14:1274–1278CrossRefGoogle Scholar
  51. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut für Agrarökologie, Bundesforschungsanstalt für Landwirtschaft (FAL)BraunschweigGermany
  2. 2.Experimentelle Phykologie und Sammlung von Algenkulturen (EPSAG), Albrecht-von-Haller Institut für PflanzenwissenschaftenGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations