Applied Microbiology and Biotechnology

, Volume 75, Issue 3, pp 655–663 | Cite as

Polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates: their association with plant roots

  • R. Child
  • C. D. Miller
  • Y. Liang
  • G. Narasimham
  • J. Chatterton
  • P. Harrison
  • R. C. Sims
  • D. Britt
  • A. J. Anderson
Environmental Biotechnology

Abstract

Five environmental mycobacterium isolates that degrade polycyclic aromatic hydrocarbons (PAHs) were associated with barley root surfaces after growth of the seedlings from inoculated seed. Mycobacterium cells were detected along the total root length for four of these isolates. These PAH-degrading mycobacterium strains had hydrophilic cell surfaces, whereas one strain, MCS, that was hydrophobic had reduced association along the root length with no cells being detected from the root tips. The root-tip-competent strain, KMS, was competitive for its root association in the presence of the root-colonizing pseudomonad, Pseudomonas putida KT2440. All mycobacterium strains utilized simple sugars (fructose, glucose) and the trisaccharide 6-kestose, present in barley root washes, for planktonic growth, but they differed in their potential for biofilm formation under in vitro conditions. Mineralization of pyrene by the KMS strain occurred when the components in the barley root wash were amended with labeled pyrene suggesting to us that mineralization could occur in plant rhizospheres containing such mycobacterium strains.

Keywords

Polycyclic aromatic hydrocarbons Root colonization Mycobacterium Remediation 

References

  1. Anderson AJ, Britt DW, Johnson J, Narsimhan G, Rodriguez A (2005) Physicochemical parameters influencing the formation of biofilms compared in mutant and wild type cells of Pseudomonas chlororaphis O6. Water Sci Technol 57:21–25Google Scholar
  2. Anokhina TO, Kochetkov VV, Zelenkova NF, Balakshina VV, Boronin AM (2004) Biodegradation of phenanthrene by Pseudomonas bacteria bearing rhizospheric plasmids in model plant–microbial associations. Appl Biochem Microbiol 40:568–572CrossRefGoogle Scholar
  3. Bais HP, Fall R, Vivanco JM (2001) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319CrossRefGoogle Scholar
  4. Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001) Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol Plant–Microb Interact 14:255–260Google Scholar
  5. Carter G, Wu M, Drummond DC, Bermudez LE (2003) Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J Med Microbiol 52:747–752CrossRefGoogle Scholar
  6. Cerniglia CE (1993). Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4:331–338CrossRefGoogle Scholar
  7. Chen YC, Banks MK, Schwab AP (2003) Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.). Environ Sci Technol 37:5778–5782CrossRefGoogle Scholar
  8. Chatterton NJ, Hardson PA (2003) Fructans in crested wheatgrass leaves. J Plant Physiol 160:843–849CrossRefGoogle Scholar
  9. Cheung PY, Kinkle BK (2001) Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl Environ Microbiol 67:2222–2229CrossRefGoogle Scholar
  10. Conn VM, Franco CM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794CrossRefGoogle Scholar
  11. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719Google Scholar
  12. Davies GD, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298CrossRefGoogle Scholar
  13. Daane LL, Harjono I, Zylstra JG, Häggblom MM (2001) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol 67:2683–2691CrossRefGoogle Scholar
  14. Dean-Ross D, Cerniglia CE (1996) Degradation of pyrene by Mycobacterium flavescens. Appl Microbiol Biotechnol 46:307–312CrossRefGoogle Scholar
  15. Derz K, Klinner U, Schuphan I, Stachebrandt E, Kroppenstedt RM (2004). Mycobacterium pyrenivorans sp. nov., a novel polycyclic-aromatic-hydrocarbon-degrading species. Int J Syst Evol Microbiol 54:2313–2317CrossRefGoogle Scholar
  16. Djordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68:2950–2958CrossRefGoogle Scholar
  17. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  18. Espinosa-Urgel M, Salido A, Ramos JL (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182:2363–2369CrossRefGoogle Scholar
  19. Ferro AM, Sims RC, Bugbee B (1994) Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil. J Environ Qual 23:272–279CrossRefGoogle Scholar
  20. Hall K, Miller CD, Sorensen DL, Anderson AJ, Sims RC (2005). Development of a catabolically significant genetic probe for polycyclic aromatic hydrocarbon-degrading mycobacteria in soil. Biodegradation 16:475–484CrossRefGoogle Scholar
  21. Hall-Stoodley L, Lappin-Scott H (1998) Biofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum. FEMS Microbiol Lett 168:77–84CrossRefGoogle Scholar
  22. Harvey RG (1991) Polycyclic aromatic hydrocarbons chemistry and carcinogenicity. Cambridge Univ. Press, Cambridge, UKGoogle Scholar
  23. Heitkamp MA, Franklin W, Cerniglia CE (1988). Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol 54:2549–2555Google Scholar
  24. Henry GAF, Wallace RK (1993) The origin, distribution, and evolutionary significance of fructans. In: Suzuki M, Chatterton NJ (eds) Science and technology of fructans. CRC, Boca Raton, FL, pp 119–139Google Scholar
  25. Jackson RW, Preston GM, Rainey PB (2005) Genetic characterization of Pseudomonas fluorescens SBw25 rsp gene expression in the phylosphere and in vitro. J Bacteriol 187:8477–8488CrossRefGoogle Scholar
  26. James DW, Suslow TV, Steinback KE (1985). Relationship between rapid, firm adhesion and long-term colonization of roots by bacteria. Appl Environ Microbiol 50:392–397Google Scholar
  27. Jana TK, Srivastava AK, Csery K, Arora DK (2000) Influence of growth and environmental conditions on cell surface hydrophobicity of Pseudomonas fluorescens in non-specific adhesion. Can J Microbiol 46:28–37CrossRefGoogle Scholar
  28. Keuth S, Rehm HJ (1991) Biodegradation of phenanthrene by Arthrobacter polychromogenes isolated from contaminated soil. Appl Microbiol Biotechnol 34:804–808CrossRefGoogle Scholar
  29. Khan AA, Wang RF, Cao WW, Doerge DR, Wennerstrom D, Cerniglia CE. (2001) Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. Strain PYR-1. Appl Environ Microbiol 67:3577–3585CrossRefGoogle Scholar
  30. Kim YB, Park KY, Chung Y, Oh KC, Buchanan BB (2004) Phytoremediation of anthracene contaminated soils by different plant species. J Plant Biol 47:174–178CrossRefGoogle Scholar
  31. Leys NM, Bastiaens L, Verstraete W, Springael D (2005) Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil. Appl Microbiol Biotechnol 66:726–736CrossRefGoogle Scholar
  32. Liste HH, Alexander M (2000) Plant-promoted pyrene degradation in soil. Chemosphere 40:7–10CrossRefGoogle Scholar
  33. Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490CrossRefGoogle Scholar
  34. Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10CrossRefGoogle Scholar
  35. Macrae S, Thomson JA, Van Staden J (1988) Colonization of tomato plants by two agrocin-producing strains of Agrobacterium tumefaciens. Appl Environ Microbiol 54:3133–3137Google Scholar
  36. Marsollier L, Stinear T, Aubry J, AndreJPS, Robert R, Legras P, Manceau AL, Audrain C,Bourdon S, Kouakou H, Carbonnelle B (2004) Aquatic plants stimulate the growth of and biofilm formation by Mycobacterium ulcerans in axenic culture and harbor these bacteria in the environment. Appl Environ Microbiol 70:1097–1103CrossRefGoogle Scholar
  37. Matthysse AG, McMahan S (1998) Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants. Appl Environ Microbiol 64:2341–2345Google Scholar
  38. Menzie CA,. Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26:1278–1284CrossRefGoogle Scholar
  39. Miller CD, Hall K, Liang YN, Nieman K, Sorensen D, Issa B, Anderson AJ, Sims RC (2004). Isolation and characterization of polycyclic aromatic hydrocarbon-degrading mycobacterium isolates from soil. Microb Ecol 48:230–238CrossRefGoogle Scholar
  40. Miller CD, Child R, Hughes JE, Der JP, Sims RC, Anderson AJ (2006) Diversity of soil mycobacterium isolates from three sites that degrade polycyclic aromatic hydrocarbons. J Appl Microbiol. DOI 10.1111/j.1365-2672.2006.03202
  41. Molina MA, Godoy P, Ramos-Gonzalez MI, Munoz N, Ramos JL, Espinosa-Urgel M (2005). Role of iron and the TonB system in colonization of corn seeds and roots by Pseudomonas putida KT2440. Environ Microbiol 7:443–449CrossRefGoogle Scholar
  42. Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70:340–345CrossRefGoogle Scholar
  43. Morris CE, Monier JM (2003). The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453CrossRefGoogle Scholar
  44. Nedunuri KV, Govindaraju RS, Banks MK, Schwab AP, Chen Z (2000) Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng 126:483–490CrossRefGoogle Scholar
  45. Patnaik P (1992) Hydrocarbon, aromatic. In: Patnaik P (ed) A comprehensive guide to the hazardous properties of chemical substances. Van Nostrand Reinhold, New York, NY, pp 425–445Google Scholar
  46. Paul EA, Clark FE (1989) Occurrences and distribution of soil organics. In: Paul EA, Clark FE (eds) Soil microbiology and biochemistry. Academic, San Diego, CA, pp 81–84Google Scholar
  47. Read DB, Bengough PJ, Gregory J, Crawford JW, Robinson D, Scrimgeour CM, Young IM, Zhang K, Zhang X (2003). Plant roots release phospholipids surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–326CrossRefGoogle Scholar
  48. Rentz JA, Alvarez PJ, Schnoor JL (2004) Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environ Microbiol 6:574–583CrossRefGoogle Scholar
  49. Rose L, Kaufmann SH, Daugelat S (2004). Involvement of Mycobacterium smegmatis undecaprenyl phosphokinase in biofilm and smegma formation. Microbes Infect 6:965–971CrossRefGoogle Scholar
  50. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacteria N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant–Microb Interact 13:637–648Google Scholar
  51. Tsao DT (2003) Overview of phytotechnologies. Adv Biochem Eng Biotechnol 78:4–50Google Scholar
  52. Van Loosdrecht MC, Lyklema J, Norde W, Schraa G, AJ Zehnder (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897Google Scholar
  53. Varrot A, Leydier S, Pell G, Macdonald JM, Stick RV, Henrissat B, Gilbert HJ, Davies GJ (2005) Mycobacterium tuberculosis strains possess functional cellulases. J Biol Chem 280:20181–20184CrossRefGoogle Scholar
  54. Walker TS, Bais HP, Deziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004). Pseudomonas aeruginosa-plant root interactions. Pathgenicity, biofilm formation, and root exudation. Plant Physiol 134:320–331CrossRefGoogle Scholar
  55. Wick L, de Munain A, Springael D, Harms H (2002) Responses of Mycobacterium sp LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • R. Child
    • 1
  • C. D. Miller
    • 1
  • Y. Liang
    • 2
  • G. Narasimham
    • 2
  • J. Chatterton
    • 3
  • P. Harrison
    • 3
  • R. C. Sims
    • 2
  • D. Britt
    • 2
  • A. J. Anderson
    • 1
  1. 1.Department of BiologyUtah State UniversityLoganUSA
  2. 2.Department of Biological Engineering and IrrigationUtah State UniversityLoganUSA
  3. 3.USDA Forage and Range Research LaboratoryUtah State UniversityLoganUSA

Personalised recommendations