Skip to main content

A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol


Xylitol is the first rare sugar that has global markets. It has beneficial health properties and represents an alternative to current conventional sweeteners. Industrially, xylitol is produced by chemical hydrogenation of d-xylose into xylitol. The biotechnological method of producing xylitol by metabolically engineered yeasts, Saccharomyces cerevisiae or Candida, has been studied as an alternative to the chemical method. Due to the industrial scale of production, xylitol serves as an inexpensive starting material for the production of other rare sugars. The second part of this mini-review on xylitol will look more closely at the biotechnological production and future applications of the rare sugar, xylitol.

This is a preview of subscription content, access via your institution.

Fig. 1


  • Choi J-H, Moon K-H, Ryu Y-W, Seo J-H (2000) Production of xylitol in cell recycle fermentations of Candido tropicalis. Biotechnol Lett 22:1625–1628

    CAS  Article  Google Scholar 

  • Granström T (2002) Biotechnological production of xylitol with Candida yeasts, PhD thesis, Helsinki University of Technology, Finland

  • Granström TB, Takata G, Tokuda M, and Izumori K (2004) A novel and complete strategy for bioproduction of rare sugars. J Biosci Bioeng 97:89–94

    Article  PubMed  Google Scholar 

  • Granström TB, Takata G, Morimoto K, Leisola M, Izumori K (2005) l-Lyxose and l-xylose production from xylitol using Alcaligenes 701B strain and immobilized l-rhamnose isomerase enzyme. Enzyme Microb Technol 36:976–981

    Article  Google Scholar 

  • Guo C, Zhao C, He P, Lu D, Shen A, Jiang N (2006) Screening and characterization of yeasts for xylitol production. J Appl Microbiol 101:1096–1104

    CAS  Article  PubMed  Google Scholar 

  • Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hägerdal B, Penttila M, Keränen S (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology (NY) 9:1090–1095

    CAS  Article  Google Scholar 

  • Hallborn J, Gorwa M-F, Meinander N, Penttilä M, Keränen S, Hahn-Hägerdahl B (1994) The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing XYL1 gene. Appl Microbiol Biotechnol 42:326–333

    CAS  PubMed  Google Scholar 

  • Härkönen M, Nuojua P (1979) Eri tekijöiden vaikutus ksyloosin katalyyyttiseen hydraukseen ksylitoliksi. Kemia-Kemi 6:445–447

    Google Scholar 

  • Itoh H, Okaya H, Khan AR, Tajima S, Hayakawa S, Izumori K (1994) Purification and characterization of d-tagatose 3-epimerase from Pseudomonas sp. ST-24. Biosci Biotechnol Biochem 58:2168–2171

    CAS  Article  Google Scholar 

  • Izumori K, Ueda Y, Yamanaka K (1997) Pentose metabolism in Micrococcus smegmatis: comparison of l-arabinose isomerases induced by l-arabinose and d-galactose. J Bacteriol 133:413–414

    Article  Google Scholar 

  • Kim JH, Han KC, Koh YH, Ryu YW, Seo JH (2002) Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J Ind Microbiol Biotech 29:16–19

    CAS  Article  Google Scholar 

  • Kwon SG, Park SW, Oh DK (2006) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosci Bioeng 101:13–18

    CAS  Article  PubMed  Google Scholar 

  • Leang K, Takada G, Fukai Y, Morimoto K, Granström TB, and Izumori K (2004) Novel reactions of l-rhamnose isomerase from Pseudomonas stutzeri and its relation with d-xylose isomerase via substrate specificity. Biochim Biophys Acta 1674:68–77

    CAS  Article  PubMed  Google Scholar 

  • Lopez F, Delgado OD, Martinez MA, Spencer JF, Figueroa LI (2004) Characterization of a new xylitol-producer Candida tropicalis strain. Antonie van Leeuwenhoek 85:281–286

    CAS  Article  PubMed  Google Scholar 

  • Mayer G, Kulbe KD, Nidetzky B (2002) Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from d-glucose. Appl Biochem Biotechnol 98–100:577–589

    Article  PubMed  Google Scholar 

  • Melaja A, Hämäläinen L, Heikkilä HO (1981) Menetelmä ksylitolin suhteen rikastuneen polyolin vesiliuoksen valmistamiseksi. FI 589388 (Finnish patent)

  • Nigam P, Singh D (1995) Process for fermentative production of xylitol—a sugar substitute. Proc Biochem 30:117–124

    CAS  Google Scholar 

  • Ojamo H (1994) Yeast xylose metabolism and xylitol production, PhD thesis, Helsinki University of Technology, Finland

  • Onishi H, Suzuki T (1966) The production of xylitol, L-arabinitol and ribitol by yeast. Agr Biol Chem 30:1139–1144

    CAS  Article  Google Scholar 

  • Onishi H, Suzuki T (1969) Microbial production of xylitol from glucose. Appl Environ Microbiol 18:1031–1035

    CAS  Article  Google Scholar 

  • Povelainen M and Miasnikov AN (2006) Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Biotechnol

  • Roberto IC, de Mancilha IM, Sato S (1999) Influence of kLa on bioconversion of rice straw hemicellulose hydrolysate to xylitol. Bioprocess Eng 21:505–508

    CAS  Google Scholar 

  • Suzuki S, Sugiyama M, Mihara Y, Hashiguchi K, Yokozeki K (2002) Novel enzymatic method for the production of xylitol from d-arabitol by Gluconobacter oxydans. Biosci Biotechnol Biochem 66:2614–2620

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tom Birger Granström.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Granström, T.B., Izumori, K. & Leisola, M. A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74, 273–276 (2007).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Xylitol
  • Xylitol Production
  • Xylitol Dehydrogenase
  • Xylitol Yield
  • Rare Sugar