Advertisement

A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol

  • Tom Birger GranströmEmail author
  • Ken Izumori
  • Matti Leisola
Mini-Review

Abstract

Xylitol is the first rare sugar that has global markets. It has beneficial health properties and represents an alternative to current conventional sweeteners. Industrially, xylitol is produced by chemical hydrogenation of d-xylose into xylitol. The biotechnological method of producing xylitol by metabolically engineered yeasts, Saccharomyces cerevisiae or Candida, has been studied as an alternative to the chemical method. Due to the industrial scale of production, xylitol serves as an inexpensive starting material for the production of other rare sugars. The second part of this mini-review on xylitol will look more closely at the biotechnological production and future applications of the rare sugar, xylitol.

Keywords

Xylitol Xylitol Production Xylitol Dehydrogenase Xylitol Yield Rare Sugar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Choi J-H, Moon K-H, Ryu Y-W, Seo J-H (2000) Production of xylitol in cell recycle fermentations of Candido tropicalis. Biotechnol Lett 22:1625–1628CrossRefGoogle Scholar
  2. Granström T (2002) Biotechnological production of xylitol with Candida yeasts, PhD thesis, Helsinki University of Technology, FinlandGoogle Scholar
  3. Granström TB, Takata G, Tokuda M, and Izumori K (2004) A novel and complete strategy for bioproduction of rare sugars. J Biosci Bioeng 97:89–94Google Scholar
  4. Granström TB, Takata G, Morimoto K, Leisola M, Izumori K (2005) l-Lyxose and l-xylose production from xylitol using Alcaligenes 701B strain and immobilized l-rhamnose isomerase enzyme. Enzyme Microb Technol 36:976–981CrossRefGoogle Scholar
  5. Guo C, Zhao C, He P, Lu D, Shen A, Jiang N (2006) Screening and characterization of yeasts for xylitol production. J Appl Microbiol 101:1096–1104CrossRefGoogle Scholar
  6. Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hägerdal B, Penttila M, Keränen S (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology (NY) 9:1090–1095CrossRefGoogle Scholar
  7. Hallborn J, Gorwa M-F, Meinander N, Penttilä M, Keränen S, Hahn-Hägerdahl B (1994) The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing XYL1 gene. Appl Microbiol Biotechnol 42:326–333Google Scholar
  8. Härkönen M, Nuojua P (1979) Eri tekijöiden vaikutus ksyloosin katalyyyttiseen hydraukseen ksylitoliksi. Kemia-Kemi 6:445–447Google Scholar
  9. Itoh H, Okaya H, Khan AR, Tajima S, Hayakawa S, Izumori K (1994) Purification and characterization of d-tagatose 3-epimerase from Pseudomonas sp. ST-24. Biosci Biotechnol Biochem 58:2168–2171CrossRefGoogle Scholar
  10. Izumori K, Ueda Y, Yamanaka K (1997) Pentose metabolism in Micrococcus smegmatis: comparison of l-arabinose isomerases induced by l-arabinose and d-galactose. J Bacteriol 133:413–414Google Scholar
  11. Kim JH, Han KC, Koh YH, Ryu YW, Seo JH (2002) Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J Ind Microbiol Biotech 29:16–19CrossRefGoogle Scholar
  12. Kwon SG, Park SW, Oh DK (2006) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosci Bioeng 101:13–18CrossRefGoogle Scholar
  13. Leang K, Takada G, Fukai Y, Morimoto K, Granström TB, and Izumori K (2004) Novel reactions of l-rhamnose isomerase from Pseudomonas stutzeri and its relation with d-xylose isomerase via substrate specificity. Biochim Biophys Acta 1674:68–77Google Scholar
  14. Lopez F, Delgado OD, Martinez MA, Spencer JF, Figueroa LI (2004) Characterization of a new xylitol-producer Candida tropicalis strain. Antonie van Leeuwenhoek 85:281–286CrossRefGoogle Scholar
  15. Mayer G, Kulbe KD, Nidetzky B (2002) Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from d-glucose. Appl Biochem Biotechnol 98–100:577–589CrossRefGoogle Scholar
  16. Melaja A, Hämäläinen L, Heikkilä HO (1981) Menetelmä ksylitolin suhteen rikastuneen polyolin vesiliuoksen valmistamiseksi. FI 589388 (Finnish patent)Google Scholar
  17. Nigam P, Singh D (1995) Process for fermentative production of xylitol—a sugar substitute. Proc Biochem 30:117–124CrossRefGoogle Scholar
  18. Ojamo H (1994) Yeast xylose metabolism and xylitol production, PhD thesis, Helsinki University of Technology, FinlandGoogle Scholar
  19. Onishi H, Suzuki T (1966) The production of xylitol, L-arabinitol and ribitol by yeast. Agr Biol Chem 30:1139–1144Google Scholar
  20. Onishi H, Suzuki T (1969) Microbial production of xylitol from glucose. Appl Environ Microbiol 18:1031–1035Google Scholar
  21. Povelainen M and Miasnikov AN (2006) Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Biotechnol doi.org/10.1016/j.jbiotec.2006.09.008
  22. Roberto IC, de Mancilha IM, Sato S (1999) Influence of kL a on bioconversion of rice straw hemicellulose hydrolysate to xylitol. Bioprocess Eng 21:505–508Google Scholar
  23. Suzuki S, Sugiyama M, Mihara Y, Hashiguchi K, Yokozeki K (2002) Novel enzymatic method for the production of xylitol from d-arabitol by Gluconobacter oxydans. Biosci Biotechnol Biochem 66:2614–2620CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Tom Birger Granström
    • 1
    Email author
  • Ken Izumori
    • 1
  • Matti Leisola
    • 2
  1. 1.Rare Sugar Research CenterKagawa UniversityMiki-choJapan
  2. 2.Laboratory of Bioprocess EngineeringHelsinki University of TechnologyEspooFinland

Personalised recommendations