Skip to main content

High-temperature biotrickling filtration of hydrogen sulphide

Abstract

Biofiltration of malodorous reduced sulphur compounds such as hydrogen sulphide has been confined to emissions that are at temperatures below 40°C despite the fact that there are many industrial emissions (e.g. in the pulp and paper industry) at temperatures well above 40°C. This paper describes our study on the successful treatment of hydrogen sulphide gas at temperatures of 40, 50, 60 and 70°C using a microbial community obtained from a hot spring. Three biotrickling filter (BTF) systems were set up in parallel for a continuous run of 9 months to operate at three different temperatures, one of which was always at 40°C as a mesophilic control and the other two were for exploring high-temperature operation up to 70°C. The continuous experiment and a series of batch experiments in glass bottles (250 ml) showed that addition of glucose and monosodium glutamate enhanced thermophilic biofiltration of hydrogen sulphide gas and a removal rate of 40 g m−3 h−1 was achieved at 70°C. We suggest that the glucose is acting as a carbon source for the existing microbial community in the BTFs, whereas glutamate is acting as a compatible solute. The use of such organic compounds to enhance biodegradation of hydrogen sulphide, particularly at high temperatures, has not been demonstrated to our knowledge and, hence, has opened up a range of possibilities for applying biofiltration to hot gas effluent.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Arp JA, Yeager, CM, Hyman MR (2001) Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12:81–103

    CAS  Article  Google Scholar 

  • Baggi G, Andreoni V, Bernasconi S, Cavalca L, Zangrossi M (2002) Co-metabolic degradation of mixtures of monochlorophenols by phenol-degrading microorganisms. Ann Microbiol 53:143–153

    Google Scholar 

  • Bohn H (1992) Consider biofiltration for decontaminating gases. Chem Eng Prog 88:34–40

    CAS  Google Scholar 

  • Burgess JE, Parsons SA, Stuetz RM (2001) Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63

    CAS  Article  Google Scholar 

  • Cho BC, Kim YG, Choi DH (2006) Oceanobacillus profundus sp.nov., isolated from a deep-sea sediment core. Available at http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode= Info&id=372463&lvl=3&p=mapview&p=has_linkout&p=blast_url&p=genome_blast&lin=f&keep=1&srchmode=1&unlock

  • Cox CD, Woo HJ, Robinson KG (1998) Cometabolic biodegradation of trichloroethylene (TCE) in the gas phase. Water Sci Technol 37 (8):97–104

    CAS  Article  Google Scholar 

  • Dhamwichukorn S (2001) Biodegradation of methanol and alpha-pinene using thermophilic bacteria and its application in thermophilic biofiltration systems. Dissertation, Michigan Technological University

  • Dhamwichukorn S, Kleinheinz GT, Bagley ST (2001) Thermophilic biofiltration of methanol and alpha-pinene. J Ind Microbiol Biotechnol 26(3):127–133

    CAS  Article  Google Scholar 

  • Devinny JS, Deshusses MA, Webster TS (1999) Biofiltration for air pollution Control. CRC Press, Boca Raton, FL

    Google Scholar 

  • Evans WC, Smith BSW, Fernley HN, Davies JI (1971) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J 122:543–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Heyndrickx M, Niall A Logan, Liesbeth Lebbe, Marina Rodríguez-Díaz, Gillian Forsyth, Johan Goris, Patsy Scheldeman, Paul De Vos (2004) Bacillus galactosidilyticus sp. nov., an alkali-tolerant β-galactosidase producer. Int J Syst Evol Microbiol 54:617–621

    CAS  Article  Google Scholar 

  • Heyrman J, Logan NA, Busse HJ, Balcaen A, Lebbe L, Rodriguez-Diaz M, Swings J, De Vos P (2003) Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb.nov., and emended description of the genus Virgibacillus. Int J Syst Evol Microbiol 53:501–511

    CAS  Article  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutinary studies. Mol Biol Evol 23(2):254–267

    CAS  Article  Google Scholar 

  • Kong Z, Farhana L, Fulthorpe R, Allen DG (2001) Treatment of volatile organic compounds in a biotrickling filter under thermophilic conditions. Environ Sci Technol 35(21):4347–4352

    CAS  Article  Google Scholar 

  • Kulkarni M, Chaudhari A (2006) Biodegradation of p-nitrophenol by P. putida. Bioresour Technol 97:982–988

    CAS  Article  Google Scholar 

  • Loh KC, Wang SJ (1998) Enhancement of Biodegradation of phenol and a nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources. Biodegradation 8(5):329–338

    CAS  Article  Google Scholar 

  • Louie TM, Webster CM, Xun LY (2002) Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 184:3492–3500

    CAS  Article  Google Scholar 

  • Lu J, Nogi Y, Takami H (2001) Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 205:291–297

    CAS  Article  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2002) Brock biology of microorganisms. 10th edn. Pearson Education Inc., New Jersey

    Google Scholar 

  • Matteau Y, Ramsay B (1997) Biofiltration of BTEX under thermophilic conditions. In: Leeson A, Alleman BC (eds) In situ and on-site bioremediation: vol. 5(4–5). Batelle, pp 199–204

  • Matteau Y, Ramsay B (1999) Thermophilic toluene biofiltration. J Air Waste Manag Assoc 49(3):350–354

    CAS  Article  Google Scholar 

  • McCarty PL (2000) Novel biological removals of hazardous chemicals at trace levels. Water Sci Technol 42(12):49–60

    CAS  Article  Google Scholar 

  • Minuth B (1999) Influence of nutrients on the degradation kinetics in a. Department of Biotechnology, Berlin, Technische Fachhochschule Berlin, p 91

    Google Scholar 

  • Muyzer G, De Waal EC, Utterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    CAS  Article  Google Scholar 

  • Park CB, Lee SB (2000) Effects of exogenous compatible solutes on growth of the hyperthermophilic archaeon Sulpholobus solfataricus. J Biosci Bioeng 89(4):318–322

    CAS  Article  Google Scholar 

  • Perry RH, Green DW (1997) Perry's chemical engineers' handbook, 7th edn. McGraw-Hill

  • Raats D, Halpern M (2006) Oceanobacillus chironomi sp. nov., a halotolerant and facultative alkaliphilic species isolated from a chironomid egg mass. Int J Syst Evol Microbiol (in press)

  • Romano I, Lama L, Nicolaus B, Poli A, Gambacorta A, Giordano A (2006) Oceanobacillus oncorhynchi subsp. incaldanensis subsp. nov., a halophilic alkalitolerant bacterium isolated from an algal mat collected from a sulphurous spring in Campania (Italy) and emended description of Oceanobacillus oncorhynchi. Int J Syst Evol Microbiol 56:805–810

    CAS  Article  Google Scholar 

  • Shanchayan B, Parker W, Pride C (2006) Dynamic analysis of a biofilter treating autothermal thermophilic aerobic digestion offgas. J Environ Eng Sci 5:263–272

    CAS  Article  Google Scholar 

  • Sologar VS, Lu Z, Allen DG (2003) Biofiltration of concentrated mixtures of hydrogen sulfide and methanol. Environ Prog 22(2):129–136

    CAS  Article  Google Scholar 

  • Strauss JM, Riedel KJ, Plessis (2004) Mesophilic and thermophilic BTEX substrate interactions for a toluene-acclimatized. Appl Microbiol Biotechnol 64:855–861

    CAS  Article  Google Scholar 

  • Topp E, Hanson RS (1990) Degradation of pentachlorophenol by a flavobacterium species grown under continuous culture under various nutrient limitations. Appl Environ Microbiol 56(2):541–544

    CAS  Article  Google Scholar 

  • Van Liere HC, van Groenestijin JW (2003) Thermophilic biofiltration of biological cleaning of hot and fatty waste gases. Biologische Abgasreinigung 1777:275–279

    Google Scholar 

  • Wani AH, Branion RMR, Lau AK (1997) Biofiltration: A promising and cost-effective control technology for odors, VOCs, and air toxics. J Environ Sci Health A 32(7):2027–2055

    Google Scholar 

  • Yumoto I, Hirota K, Nodasaka Y, Nakajima K (2005) Oceanobacillus oncorhynchi sp. nov., a halotolelant obligate alkaliphile isolated from the skin of a rainbow trout (Oncorhynchus mykiss), and emended description of the genus Oceanobacillus. Int J Syst Evol Microbiol 55:1521–1524

    CAS  Article  Google Scholar 

  • Zhang Y, Liss SN, Allen DG (2006) The effects of methanol on the biofiltration of dimethyl sulphide in inorganic biofilters. Biotechnol Bioeng 95(4):734–743

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The financial support of Natural Sciences and Engineering Research Council of Canada (NSERC) and the research consortium “Minimizing the Impact of Pulp and Paper Mill Discharges,” consisting of Aracruz Celulose S.A., Carter Holt Harvey Tasman, Domtar Inc., Eka Chemicals Inc., Georgia-Pacific Corporation, Irving Pulp and Paper Ltd., Japan Carlit Co. Ltd., ERCO Worldwide (formerly Sterling Pulp Chemicals, Ltd.) and Tembec Inc., is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Grant Allen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Datta, I., Fulthorpe, R.R., Sharma, S. et al. High-temperature biotrickling filtration of hydrogen sulphide. Appl Microbiol Biotechnol 74, 708–716 (2007). https://doi.org/10.1007/s00253-006-0716-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0716-8

Keywords

  • Reduced sulphur
  • Air pollution
  • Biofiltration
  • Sulphur oxidisers
  • Biotreatment
  • Biological gas cleaning