Applied Microbiology and Biotechnology

, Volume 73, Issue 4, pp 735–739 | Cite as

The promise of synthetic biology

  • Jürgen PleissEmail author


DNA synthesis has become one of the technological bases of a new concept in biology: synthetic biology. The vision of synthetic biology is a systematic, hierarchical design of artificial, biology-inspired systems using robust, standardized, and well-characterized building blocks. The design concept and examples from four fields of application (genetic circuits, protein design, platform technologies, and pathway engineering) are discussed, which demonstrate the usefulness and the promises of synthetic biology. The vision of synthetic biology is to develop complex systems by simplified solutions using available material and knowledge. Synthetic biology also opens a door toward new biomaterials that do not occur in nature.


Modular design Genetic circuits Protein design DNA synthesis 



Inspiration and financial support from the EU-NEST program on synthetic biology (EUROBIOSYN) are greatly acknowledged. I am especially grateful for the fruitful discussions with Homme W. Hellinga and Sven Panke and for the constructive criticism by the unknown reviewers.


  1. Alvarez M, Rhodes SJ, Bidwell JP (2003) Context-dependent transcription: all politics is local. Gene 313:43–57CrossRefGoogle Scholar
  2. Astier Y, Bayley H, Howorka S (2005) Protein components for nanodevices. Curr Opin Chem Biol 9:576–584Google Scholar
  3. Austin DW, Allen MS, McCollum JM, Dar RD, Wilgus JR, Sayler GS, Samatova NF, Cox CD, Simpson ML (2006) Gene network shaping of inherent noise spectra. Nature 439:608–611CrossRefGoogle Scholar
  4. Ball P (2004) Synthetic biology: starting from scratch. Nature 431:624–626CrossRefGoogle Scholar
  5. Ball P (2005) Synthetic biology for nanotechnology. Nanotechnology 16:R1–R8CrossRefGoogle Scholar
  6. Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434:1130–1134CrossRefGoogle Scholar
  7. Benner SA (2004) Understanding nucleic acids using synthetic chemistry. Acc Chem Res 37:784–797CrossRefGoogle Scholar
  8. Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6:533–543CrossRefGoogle Scholar
  9. Bolon DN, Voigt CA, Mayo SL (2002) De novo design of biocatalysts. Curr Opin Chem Biol 6:125–129CrossRefGoogle Scholar
  10. Brent R (2004) A partnership between biology and engineering. Nat Biotechnol 22:1211–1214CrossRefGoogle Scholar
  11. Coincon M, Heitz A, Chiche L, Derreumaux P (2005) The beta alpha beta alpha beta alpha elementary Supersecondary structure of the Rossmann fold from porcine lactate dehydrogenase exhibits characteristics of a molten globule. Proteins Struct Funct Bioinform 60:740–745CrossRefGoogle Scholar
  12. Dattelbaum JD, Looger LL, Benson DE, Sali KM, Thompson RB, Hellinga HW (2005) Analysis of allosteric signal transduction mechanisms in an engineered fluorescent maltose biosensor. Protein Sci 14:284–291CrossRefGoogle Scholar
  13. Dueber JE, Yeh BJ, Bhattacharyya RP, Lim WA (2004) Rewiring cell signaling: the logic and plasticity of eukaryotic protein circuitry. Curr Opin Struct Biol 14:690–699CrossRefGoogle Scholar
  14. Dwyer MA, Looger LL, Hellinga HW (2004) Computational design of a biologically active enzyme. Science 304:1967–1971CrossRefGoogle Scholar
  15. Endy D (2005) Foundations for engineering biology. Nature 438:449–453CrossRefGoogle Scholar
  16. Endy D, You L, Yin J, Molineux IJ (2000) Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes. Proc Natl Acad Sci USA 97:5375–5380CrossRefGoogle Scholar
  17. Ferber D (2004) Synthetic biology. Microbes made to order. Science 303:158–161CrossRefGoogle Scholar
  18. Gil R, Silva FJ, Pereto J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68:518–537CrossRefGoogle Scholar
  19. Gilmore MA, Steward LE, Chamberlin AR (1999) Incorporation of noncoded amino acids by in vitro protein biosynthesis. In: Schmidtchen FP (ed) Implementation and redesign of catalytic function in biopolymers. Springer, BerlinGoogle Scholar
  20. Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA 3rd, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103:425–430CrossRefGoogle Scholar
  21. Hecht MH, Richardson JS, Richardson DC, Ogden RC (1990) De novo design, expression, and characterization of Felix: a four-helix bundle protein of native-like sequence. Science 249:884–891CrossRefGoogle Scholar
  22. Hederos S, Tegler L, Carlsson J, Persson B, Viljanen J, Broo KS (2006) A promiscuous glutathione transferase transformed into a selective thiolester hydrolase. Org Biomol Chem 4:90–97CrossRefGoogle Scholar
  23. Herrera S (2005) Synthetic biology offers alternative pathways to natural products. Nat Biotechnol 23:270–271CrossRefGoogle Scholar
  24. Hocker B, Claren J, Sterner R (2004) Mimicking enzyme evolution by generating new (betaalpha)8-barrels from (betaalpha)4-half-barrels. Proc Natl Acad Sci USA 101:16448–16453CrossRefGoogle Scholar
  25. Howard PL, Chia MC, Del Rizzo S, Liu FF, Pawson T (2003) Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins. Proc Natl Acad Sci USA 100:11267–11272CrossRefGoogle Scholar
  26. Kodumal SJ, Patel KG, Reid R, Menzella HG, Welch M, Santi DV (2004) Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc Natl Acad Sci USA 101:15573–15578CrossRefGoogle Scholar
  27. Kolisnychenko V, Plunkett G 3rd, Herring CD, Feher T, Posfai J, Blattner FR, Posfai G (2002) Engineering a reduced Escherichia coli genome. Genome Res 12:640–647CrossRefGoogle Scholar
  28. Kortemme T, Ramirez-Alvarado M, Serrano L (1998) Design of a 20-amino acid, three-stranded beta-sheet protein. Science 281:253–256CrossRefGoogle Scholar
  29. Kramer BP, Fischer M, Fussenegger M (2005) Semi-synthetic mammalian gene regulatory networks. Metab Eng 7:241–250CrossRefGoogle Scholar
  30. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368CrossRefGoogle Scholar
  31. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492CrossRefGoogle Scholar
  32. Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438:441–442CrossRefGoogle Scholar
  33. Lim WA (2002) The modular logic of signaling proteins: building allosteric switches from simple binding domains. Curr Opin Struct Biol 12:61–68CrossRefGoogle Scholar
  34. Lombardi A, Summa CM, Geremia S, Randaccio L, Pavone V, DeGrado WF (2000) Inaugural article: retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc Natl Acad Sci USA 97:6298–6305CrossRefGoogle Scholar
  35. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516CrossRefGoogle Scholar
  36. Luisi PL, Ferri F, Stano P (2006) Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93:1–13CrossRefGoogle Scholar
  37. McDaniel R, Weiss R (2005) Advances in synthetic biology: on the path from prototypes to applications. Curr Opin Biotechnol 16:476–483CrossRefGoogle Scholar
  38. Menzella HG, Reisinger SJ, Welch M, Kealey JT, Kennedy J, Reid R, Tran CQ, Santi DV (2006) Redesign, synthesis and functional expression of the 6-deoxyerythronolide B polyketide synthase gene cluster. J Ind Microbiol Biotechnol 33:22–28Google Scholar
  39. Panke S, Wubbolts M (2005) Advances in biocatalytic synthesis of pharmaceutical intermediates. Curr Opin Chem Biol 9:188–194CrossRefGoogle Scholar
  40. Park S, Yang X, Saven JG (2004) Advances in computational protein design. Curr Opin Struct Biol 14:487–494CrossRefGoogle Scholar
  41. Park HS, Nam SH, Lee JK, Yoon CN, Mannervik B, Benkovic SJ, Kim HS (2006) Design and evolution of new catalytic activity with an existing protein scaffold. Science 311:535–538CrossRefGoogle Scholar
  42. Pawson T, Linding R (2005) Synthetic modular systems—reverse engineering of signal transduction. FEBS Lett 579:1808–1814CrossRefGoogle Scholar
  43. Raab RM, Tyo K, Stephanopoulos G (2005) Metabolic engineering. Adv Biochem Eng Biotechnol 100:1–17Google Scholar
  44. Rackham O, Chin JW (2005) Cellular logic with orthogonal ribosomes. J Am Chem Soc 127:17584–17585CrossRefGoogle Scholar
  45. Scott P (2003) The wrong stuff?: attempts at flight before (& after) the Wright brothers. Hylas Publishing, New YorkGoogle Scholar
  46. Simpson ML, Cox CD, Sayler GS (2003) Frequency domain analysis of noise in autoregulated gene circuits. Proc Natl Acad Sci USA 100:4551–4556CrossRefGoogle Scholar
  47. Smith HO, Hutchison CA 3rd, Pfannkoch C, Venter JC (2003) Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA 100:15440–15445CrossRefGoogle Scholar
  48. Sprinzak D, Elowitz MB (2005) Reconstruction of genetic circuits. Nature 438:443–448CrossRefGoogle Scholar
  49. Stromgaard A, Jensen AA, Stromgaard K (2004) Site-specific incorporation of unnatural amino acids into proteins. Chembiochem 5:909–916CrossRefGoogle Scholar
  50. Svendsen A (2004) Enzyme functionality: design, engineering, and screening. CRC, Boca Raton, FLGoogle Scholar
  51. Tian J, Gong H, Sheng N, Zhou X, Gulari E, Gao X, Church G (2004) Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432:1050–1054CrossRefGoogle Scholar
  52. Walter KU, Vamvaca K, Hilvert D (2005) An active enzyme constructed from a 9-amino acid alphabet. J Biol Chem 280:37742–37746CrossRefGoogle Scholar
  53. Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292:498–500Google Scholar
  54. Xie J, Schultz PG (2005) Adding amino acids to the genetic repertoire. Curr Opin Chem Biol 9:548–554CrossRefGoogle Scholar
  55. Yokobayashi Y, Weiss R, Arnold FH (2002) Directed evolution of a genetic circuit. Proc Natl Acad Sci USA 99:16587–16591CrossRefGoogle Scholar
  56. Zotchev SB, Stepanchikova AV, Sergeyko AP, Sobolev BN, Filimonov DA, Poroikov VV (2006) Rational design of macrolides by virtual screening of combinatorial libraries generated through in silico manipulation of polyketide synthases. J Med Chem 49:2077–2087CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Technical BiochemistryUniversity of StuttgartStuttgartGermany

Personalised recommendations