Applied Microbiology and Biotechnology

, Volume 73, Issue 5, pp 980–990 | Cite as

Biosynthesis and engineering of isoprenoid small molecules

  • Sydnor T. Withers
  • Jay D. KeaslingEmail author


Isoprenoid secondary metabolites are a rich source of commercial products that have not been fully explored. At present, there are isoprenoid products used in cancer therapy, the treatment of infectious diseases, and crop protection. All isoprenoids share universal prenyl diphosphate precursors synthesized via two distinct pathways. From these universal precursors, the biosynthetic pathways to specific isoprenoids diverge resulting in a staggering array of products. Taking advantage of this diversity has been the focus of much effort in metabolic engineering heterologous hosts. In addition, the engineering of the mevalonate pathway has increased levels of the universal precursors available for heterologous production. Finally, we will describe the efforts to produce to commercial terpenoids, paclitaxel and artemisinin.


Isoprenoids Terpenes Synthetic biology Metabolic engineering Artemisinin 


  1. Aharoni A, Giri AP et al (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884PubMedCrossRefGoogle Scholar
  2. Aubourg S, Lecharny A et al (2002) Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics 267:730–745PubMedCrossRefGoogle Scholar
  3. Back K, Chappell J (1995) Cloning and bacterial expression of a sesquiterpene cyclase from Hyoscyamus muticus and its molecular comparison to related terpene cyclases. J Biol Chem 270:7375–7381PubMedCrossRefGoogle Scholar
  4. Back K, Chappell J (1996) Identifying functional domains within terpene cyclases using a domain-swapping strategy. Proc Natl Acad Sci USA 93:6841–6845PubMedCrossRefADSGoogle Scholar
  5. Back K, Nah J et al (2000) Cloning of a sesquiterpene cyclase and its functional expression by domain swapping strategy. Mol Cell 10:220–225CrossRefGoogle Scholar
  6. Barkovich R, Liao JC (2001) Metabolic engineering of isoprenoids. Metab Eng 3:27–39PubMedCrossRefGoogle Scholar
  7. Bertea CM, Freije JR et al (2005) Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med 71:40–47PubMedCrossRefGoogle Scholar
  8. Besumbes O, Sauret-Gueto S et al (2004) Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol. Biotechnol Bioeng 88:168–175PubMedCrossRefGoogle Scholar
  9. Caruthers JM, Kang I et al (2000) Crystal structure determination of aristolochene synthase from the blue cheese mold, Penicillium roqueforti. J Biol Chem 275:25533–25539PubMedCrossRefGoogle Scholar
  10. Chen XY, Chen Y et al (1995) Cloning, expression, and characterization of (+)-delta-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys 324:255–266PubMedCrossRefGoogle Scholar
  11. Colby SM, Crock J et al (1998) Germacrene C synthase from Lycopersicon esculentum cv. VFNT Cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase. Proc Natl Acad Sci USA 95:2216–2221PubMedCrossRefADSGoogle Scholar
  12. Davis EM, Croteau R (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Top Curr Chem 209:53–95CrossRefGoogle Scholar
  13. Dejong JM, Liu Y et al (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224PubMedCrossRefGoogle Scholar
  14. Dictionary of natural products (2004) Version 8.1 (HRD), 1st edn. Chapman & Hall, London, UKGoogle Scholar
  15. Facchini PJ, Chappell J (1992) Gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc Natl Acad Sci USA 89:11088–11092PubMedCrossRefADSGoogle Scholar
  16. Faldt J, Arimura G et al (2003) Functional identification of AtTPS03 as (E)-beta-ocimene synthase: a monoterpene synthase catalyzing jasmonate-and wound-induced volatile formation in Arabidopsis thaliana. Planta 216:745–751PubMedGoogle Scholar
  17. Fleet CM, Yamaguchi S et al (2003) Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol 132:830–839PubMedCrossRefGoogle Scholar
  18. Friesen JA, Rodwell VW (2004) The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol 5:248PubMedCrossRefGoogle Scholar
  19. Grochowski LL, Xu H et al (2006) Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol 188:3192–3198PubMedCrossRefGoogle Scholar
  20. Hahn FM, Hurlburt AP et al (1999) Escherichia coli open reading frame 696 is idi, a nonessential gene encoding isopentenyl diphosphate isomerase. J Bacteriol 181:4499–4504PubMedGoogle Scholar
  21. Hamano Y, Kuzuyama T et al (2002) Functional analysis of eubacterial diterpene cyclases responsible for biosynthesis of a diterpene antibiotic, terpentecin. J Biol Chem 277:37098–37104PubMedCrossRefGoogle Scholar
  22. Hecht S, Eisenreich W et al (2001) Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc Natl Acad Sci USA 98:14837–14842PubMedCrossRefADSGoogle Scholar
  23. Hefner J, Rubenstein SM et al (1996) Cytochrome P450-catalyzed hydroxylation of taxa-4(5),11(12)-diene to taxa-4(20),11(12)-dien-5alpha-ol: the first oxygenation step in taxol biosynthesis. Chem Biol 3:479–489PubMedCrossRefGoogle Scholar
  24. Hefner J, Ketchum RE et al (1998) Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production. Arch Biochem Biophys 360:62–74PubMedCrossRefGoogle Scholar
  25. Hezari M, Lewis NG et al (1995) Purification and characterization of taxa-4(5),11(12)-diene synthase from pacific yew (Taxus brevifolia) that catalyzes the first committed step of taxol biosynthesis. Arch Biochem Biophys 322:437–444PubMedCrossRefGoogle Scholar
  26. Hilker M, Kobs C et al (2002) Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J Exp Biol 205:455–461PubMedGoogle Scholar
  27. Hohn TM, Ohlrogge JB (1991) Expression of a fungal sesquiterpene cyclase gene in transgenic tobacco. Plant Physiol 97:460–462PubMedCrossRefGoogle Scholar
  28. Horiguchi T, Rithner CD et al (2002) Studies on taxol biosynthesis. Preparation of taxa-4(20),11(12)-dien-5 alpha-acetoxy-10 beta-ol by deoxygenation of a taxadiene tetraacetate obtained from Japanese yew. J Org Chem 67:4901–4903PubMedCrossRefGoogle Scholar
  29. Huang Q, Roessner CA et al (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9:2237–2242PubMedCrossRefGoogle Scholar
  30. Jennewein S, Rithner CD et al (2003) Taxoid metabolism: taxoid 14beta-hydroxylase is a cytochrome P450-dependent monooxygenase. Arch Biochem Biophys 413:262–270PubMedCrossRefGoogle Scholar
  31. Jennewein S, Long RM et al (2004) Cytochrome p450 taxadiene 5alpha-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of taxol biosynthesis. Chem Biol 11:379–387PubMedCrossRefGoogle Scholar
  32. Kappers IF, Aharoni A et al (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072PubMedCrossRefADSGoogle Scholar
  33. Kuzma J, Nemecek-Marshall M et al (1995) Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol 30:97–103PubMedCrossRefGoogle Scholar
  34. Lange BM, Croteau R (1999a) Genetic engineering of essential oil production in mint. Curr Opin Plant Biol 2:139–144PubMedCrossRefGoogle Scholar
  35. Lange BM, Croteau R (1999b) Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint. Arch Biochem Biophys 365:170–174PubMedCrossRefGoogle Scholar
  36. Lange BM, Wildung MR et al (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci USA 97:2934–2939PubMedCrossRefADSGoogle Scholar
  37. Lesburg CA, Zhai G et al (1997) Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277:1820–1824PubMedCrossRefGoogle Scholar
  38. Lesburg CA, Caruthers JM et al (1998) Managing and manipulating carbocations in biology: terpenoid cyclase structure and mechanism. Curr Opin Struct Biol 8:695–703PubMedCrossRefGoogle Scholar
  39. Little DB, Croteau RB (2002) Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases delta-selinene synthase and gamma-humulene synthase. Arch Biochem Biophys 402:120–235PubMedCrossRefGoogle Scholar
  40. Lucker J, Schwab W et al (2004) Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-trans-isopiperitenol by tobacco. Plant J 39:135–145PubMedCrossRefGoogle Scholar
  41. Luttgen H, Rohdich F et al (2000) Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. Proc Natl Acad Sci USA 97:1062–1067PubMedCrossRefADSGoogle Scholar
  42. Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA 98:8915–8920PubMedCrossRefADSGoogle Scholar
  43. Mahmoud SS, Croteau RB (2003) Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Proc Natl Acad Sci USA 100:14481–14486PubMedCrossRefADSGoogle Scholar
  44. Martin VJ, Yoshikuni Y et al (2001) The in vivo synthesis of plant sesquiterpenes by Escherichia coli. Biotechnol Bioeng 75:497–503PubMedCrossRefGoogle Scholar
  45. Martin VJ, Pitera DJ et al (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802PubMedCrossRefADSGoogle Scholar
  46. Mercke P, Crock J et al (1999) Cloning, expression, and characterization of epi-cedrol synthase, a sesquiterpene cyclase from Artemisia annua L. Arch Biochem Biophys 369:213–222PubMedCrossRefGoogle Scholar
  47. Mercke P, Bengtsson M et al (2000) Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch Biochem Biophys 381:173–180PubMedCrossRefGoogle Scholar
  48. Nakano C, Okamura T et al (2005) Mycobacterium tuberculosis H37Rv3377c encodes the diterpene cyclase for producing the halimane skeleton. Chem Commun (Camb) 8:1016–1018CrossRefGoogle Scholar
  49. Ohnuma SI, Nakazawa T et al (1996a) Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis. J Biol Chem 271:10087–10095PubMedCrossRefGoogle Scholar
  50. Ohnuma SI, Narita K et al (1996b) A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product. J Biol Chem 271:30748–30754PubMedCrossRefGoogle Scholar
  51. Rasmann S, Kollner TG et al (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737PubMedCrossRefADSGoogle Scholar
  52. Reiling KK, Yoshikuni Y et al (2004) Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 87:200–212PubMedCrossRefGoogle Scholar
  53. Ro DK, Paradise EM et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943PubMedCrossRefADSGoogle Scholar
  54. Rodriguez-Concepcion M (2004) The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs. Curr Pharm Des 10:2391–2400PubMedCrossRefGoogle Scholar
  55. Rohdich F, Wungsintaweekul J et al (1999) Cytidine 5′-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proc Natl Acad Sci USA 96:11758–11763PubMedCrossRefADSGoogle Scholar
  56. Rohdich F, Hecht S et al (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163PubMedCrossRefADSGoogle Scholar
  57. Rohmer M, Knani M et al (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524PubMedGoogle Scholar
  58. Roth RJ, Acton N (1989) A simple conversion of artemisinic acid into artemisinin. J Nat Prod 52:1183–1185PubMedGoogle Scholar
  59. Rynkiewicz MJ, Cane DE et al (2001) Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc Natl Acad Sci USA 98:13543–13548PubMedCrossRefADSGoogle Scholar
  60. Rynkiewicz MJ, Cane DE et al (2002) X-ray crystal structures of D100E trichodiene synthase and its pyrophosphate complex reveal the basis for terpene product diversity. Biochemistry 41:1732–1741PubMedCrossRefGoogle Scholar
  61. Smit A, Mushegian A (2000) Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway. Genome Res 10:1468–1484PubMedCrossRefGoogle Scholar
  62. Starks CM, Back K et al (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277:1815–1820PubMedCrossRefGoogle Scholar
  63. Steele CL, Crock J et al (1998a) Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem 273:2078–2089PubMedCrossRefGoogle Scholar
  64. Steele CL, Katoh S et al (1998b) Regulation of oleoresinosis in grand fir (Abies grandis): differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in responses to wounding. Plant Physiol 116:1497–1504PubMedCrossRefGoogle Scholar
  65. Szkopinska A, Swiezewska E et al (2000) The regulation of activity of main mevalonic acid pathway enzymes: farnesyl diphosphate synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, and squalene synthase in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 267:473–477PubMedCrossRefGoogle Scholar
  66. Takahashi S, Kuzuyama T et al (1998) A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:9879–9884PubMedCrossRefADSGoogle Scholar
  67. Tarshis LC, Yan M et al (1994) Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-A resolution. Biochemistry 33:10871–10877PubMedCrossRefGoogle Scholar
  68. Tholl D, Chen F et al (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771PubMedCrossRefGoogle Scholar
  69. Umeno D, Tobias AV et al (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69:51–78PubMedCrossRefGoogle Scholar
  70. Veen M, Lang C (2004) Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 63:635–646PubMedCrossRefGoogle Scholar
  71. Vogel BS, Wildung MR et al (1996) Abietadiene synthase from grand fir (Abies grandis): cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis. J Biol Chem 271:23262–23268PubMedCrossRefGoogle Scholar
  72. Walker K, Ketchum REB et al (1999) Partial purification and characterization of acetyl coenzyme A: taxa-4(20),11(12)-dien-5alpha-ol O-acetyl transferase that catalyzes the first acylation step of taxol biosynthesis. Arch Biochem Biophys 364:273–279PubMedCrossRefGoogle Scholar
  73. Wallaart TE, Bouwmeester HJ et al (2001) Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212:460–465PubMedCrossRefGoogle Scholar
  74. Wildung MR, Croteau R (1996) A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J Biol Chem 271:9201–9204PubMedCrossRefGoogle Scholar
  75. Williams DC, Carroll BJ et al (2000) Intramolecular proton transfer in the cyclization of geranylgeranyl diphosphate to the taxadiene precursor of taxol catalyzed by recombinant taxadiene synthase. Chem Biol 7:969–977PubMedCrossRefGoogle Scholar
  76. Yang D, Shipman LW et al (2002) Structure of the Methanococcus jannaschii mevalonate kinase, a member of the GHMP kinase superfamily. J Biol Chem 277:9462–9467PubMedCrossRefGoogle Scholar
  77. Yoshikuni Y, Ferrin TE et al (2006) Designed divergent evolution of enzyme function. Nature 440:1078–1082PubMedCrossRefADSGoogle Scholar
  78. Yoshioka H, Yamada N et al (1999) cDNA cloning of sesquiterpene cyclase and squalene synthase, and expression of the genes in potato tuber infected with Phytophthora infestans. Plant Cell Physiol 40:993–998PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of BioengineeringUniversity of CaliforniaBerkeleyUSA
  3. 3.Berkeley Center for Synthetic BiologyPhysical Bioscience Division, Lawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.California Institute for Quantitative Biomedical Research (QB3)University of CaliforniaBerkeleyUSA

Personalised recommendations