Skip to main content
Log in

Biosynthesis and engineering of isoprenoid small molecules

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Isoprenoid secondary metabolites are a rich source of commercial products that have not been fully explored. At present, there are isoprenoid products used in cancer therapy, the treatment of infectious diseases, and crop protection. All isoprenoids share universal prenyl diphosphate precursors synthesized via two distinct pathways. From these universal precursors, the biosynthetic pathways to specific isoprenoids diverge resulting in a staggering array of products. Taking advantage of this diversity has been the focus of much effort in metabolic engineering heterologous hosts. In addition, the engineering of the mevalonate pathway has increased levels of the universal precursors available for heterologous production. Finally, we will describe the efforts to produce to commercial terpenoids, paclitaxel and artemisinin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aharoni A, Giri AP et al (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aubourg S, Lecharny A et al (2002) Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics 267:730–745

    CAS  PubMed  Google Scholar 

  • Back K, Chappell J (1995) Cloning and bacterial expression of a sesquiterpene cyclase from Hyoscyamus muticus and its molecular comparison to related terpene cyclases. J Biol Chem 270:7375–7381

    CAS  PubMed  Google Scholar 

  • Back K, Chappell J (1996) Identifying functional domains within terpene cyclases using a domain-swapping strategy. Proc Natl Acad Sci USA 93:6841–6845

    CAS  PubMed  Google Scholar 

  • Back K, Nah J et al (2000) Cloning of a sesquiterpene cyclase and its functional expression by domain swapping strategy. Mol Cell 10:220–225

    CAS  Google Scholar 

  • Barkovich R, Liao JC (2001) Metabolic engineering of isoprenoids. Metab Eng 3:27–39

    CAS  PubMed  Google Scholar 

  • Bertea CM, Freije JR et al (2005) Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med 71:40–47

    CAS  PubMed  Google Scholar 

  • Besumbes O, Sauret-Gueto S et al (2004) Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol. Biotechnol Bioeng 88:168–175

    CAS  PubMed  Google Scholar 

  • Caruthers JM, Kang I et al (2000) Crystal structure determination of aristolochene synthase from the blue cheese mold, Penicillium roqueforti. J Biol Chem 275:25533–25539

    CAS  PubMed  Google Scholar 

  • Chen XY, Chen Y et al (1995) Cloning, expression, and characterization of (+)-delta-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys 324:255–266

    CAS  PubMed  Google Scholar 

  • Colby SM, Crock J et al (1998) Germacrene C synthase from Lycopersicon esculentum cv. VFNT Cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase. Proc Natl Acad Sci USA 95:2216–2221

    CAS  PubMed  Google Scholar 

  • Davis EM, Croteau R (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Top Curr Chem 209:53–95

    CAS  Google Scholar 

  • Dejong JM, Liu Y et al (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224

    CAS  PubMed  Google Scholar 

  • Dictionary of natural products (2004) Version 8.1 (HRD), 1st edn. Chapman & Hall, London, UK

  • Facchini PJ, Chappell J (1992) Gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc Natl Acad Sci USA 89:11088–11092

    CAS  PubMed  Google Scholar 

  • Faldt J, Arimura G et al (2003) Functional identification of AtTPS03 as (E)-beta-ocimene synthase: a monoterpene synthase catalyzing jasmonate-and wound-induced volatile formation in Arabidopsis thaliana. Planta 216:745–751

    CAS  PubMed  Google Scholar 

  • Fleet CM, Yamaguchi S et al (2003) Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol 132:830–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friesen JA, Rodwell VW (2004) The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol 5:248

    PubMed  PubMed Central  Google Scholar 

  • Grochowski LL, Xu H et al (2006) Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol 188:3192–3198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn FM, Hurlburt AP et al (1999) Escherichia coli open reading frame 696 is idi, a nonessential gene encoding isopentenyl diphosphate isomerase. J Bacteriol 181:4499–4504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamano Y, Kuzuyama T et al (2002) Functional analysis of eubacterial diterpene cyclases responsible for biosynthesis of a diterpene antibiotic, terpentecin. J Biol Chem 277:37098–37104

    CAS  PubMed  Google Scholar 

  • Hecht S, Eisenreich W et al (2001) Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc Natl Acad Sci USA 98:14837–14842

    CAS  PubMed  Google Scholar 

  • Hefner J, Rubenstein SM et al (1996) Cytochrome P450-catalyzed hydroxylation of taxa-4(5),11(12)-diene to taxa-4(20),11(12)-dien-5alpha-ol: the first oxygenation step in taxol biosynthesis. Chem Biol 3:479–489

    CAS  PubMed  Google Scholar 

  • Hefner J, Ketchum RE et al (1998) Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production. Arch Biochem Biophys 360:62–74

    CAS  PubMed  Google Scholar 

  • Hezari M, Lewis NG et al (1995) Purification and characterization of taxa-4(5),11(12)-diene synthase from pacific yew (Taxus brevifolia) that catalyzes the first committed step of taxol biosynthesis. Arch Biochem Biophys 322:437–444

    CAS  PubMed  Google Scholar 

  • Hilker M, Kobs C et al (2002) Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J Exp Biol 205:455–461

    PubMed  Google Scholar 

  • Hohn TM, Ohlrogge JB (1991) Expression of a fungal sesquiterpene cyclase gene in transgenic tobacco. Plant Physiol 97:460–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horiguchi T, Rithner CD et al (2002) Studies on taxol biosynthesis. Preparation of taxa-4(20),11(12)-dien-5 alpha-acetoxy-10 beta-ol by deoxygenation of a taxadiene tetraacetate obtained from Japanese yew. J Org Chem 67:4901–4903

    CAS  PubMed  Google Scholar 

  • Huang Q, Roessner CA et al (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9:2237–2242

    CAS  PubMed  Google Scholar 

  • Jennewein S, Rithner CD et al (2003) Taxoid metabolism: taxoid 14beta-hydroxylase is a cytochrome P450-dependent monooxygenase. Arch Biochem Biophys 413:262–270

    CAS  PubMed  Google Scholar 

  • Jennewein S, Long RM et al (2004) Cytochrome p450 taxadiene 5alpha-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of taxol biosynthesis. Chem Biol 11:379–387

    CAS  PubMed  Google Scholar 

  • Kappers IF, Aharoni A et al (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072

    CAS  PubMed  Google Scholar 

  • Kuzma J, Nemecek-Marshall M et al (1995) Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol 30:97–103

    CAS  PubMed  Google Scholar 

  • Lange BM, Croteau R (1999a) Genetic engineering of essential oil production in mint. Curr Opin Plant Biol 2:139–144

    CAS  PubMed  Google Scholar 

  • Lange BM, Croteau R (1999b) Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint. Arch Biochem Biophys 365:170–174

    CAS  PubMed  Google Scholar 

  • Lange BM, Wildung MR et al (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci USA 97:2934–2939

    CAS  PubMed  Google Scholar 

  • Lesburg CA, Zhai G et al (1997) Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277:1820–1824

    CAS  PubMed  Google Scholar 

  • Lesburg CA, Caruthers JM et al (1998) Managing and manipulating carbocations in biology: terpenoid cyclase structure and mechanism. Curr Opin Struct Biol 8:695–703

    CAS  PubMed  Google Scholar 

  • Little DB, Croteau RB (2002) Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases delta-selinene synthase and gamma-humulene synthase. Arch Biochem Biophys 402:120–235

    CAS  PubMed  Google Scholar 

  • Lucker J, Schwab W et al (2004) Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-trans-isopiperitenol by tobacco. Plant J 39:135–145

    CAS  PubMed  Google Scholar 

  • Luttgen H, Rohdich F et al (2000) Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. Proc Natl Acad Sci USA 97:1062–1067

    CAS  PubMed  Google Scholar 

  • Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA 98:8915–8920

    CAS  PubMed  Google Scholar 

  • Mahmoud SS, Croteau RB (2003) Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Proc Natl Acad Sci USA 100:14481–14486

    CAS  PubMed  Google Scholar 

  • Martin VJ, Yoshikuni Y et al (2001) The in vivo synthesis of plant sesquiterpenes by Escherichia coli. Biotechnol Bioeng 75:497–503

    CAS  PubMed  Google Scholar 

  • Martin VJ, Pitera DJ et al (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    CAS  PubMed  Google Scholar 

  • Mercke P, Crock J et al (1999) Cloning, expression, and characterization of epi-cedrol synthase, a sesquiterpene cyclase from Artemisia annua L. Arch Biochem Biophys 369:213–222

    CAS  PubMed  Google Scholar 

  • Mercke P, Bengtsson M et al (2000) Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch Biochem Biophys 381:173–180

    CAS  PubMed  Google Scholar 

  • Nakano C, Okamura T et al (2005) Mycobacterium tuberculosis H37Rv3377c encodes the diterpene cyclase for producing the halimane skeleton. Chem Commun (Camb) 8:1016–1018

    Google Scholar 

  • Ohnuma SI, Nakazawa T et al (1996a) Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis. J Biol Chem 271:10087–10095

    CAS  PubMed  Google Scholar 

  • Ohnuma SI, Narita K et al (1996b) A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product. J Biol Chem 271:30748–30754

    CAS  PubMed  Google Scholar 

  • Rasmann S, Kollner TG et al (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    CAS  PubMed  Google Scholar 

  • Reiling KK, Yoshikuni Y et al (2004) Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 87:200–212

    CAS  PubMed  Google Scholar 

  • Ro DK, Paradise EM et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    CAS  PubMed  Google Scholar 

  • Rodriguez-Concepcion M (2004) The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs. Curr Pharm Des 10:2391–2400

    CAS  PubMed  Google Scholar 

  • Rohdich F, Wungsintaweekul J et al (1999) Cytidine 5′-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proc Natl Acad Sci USA 96:11758–11763

    CAS  PubMed  Google Scholar 

  • Rohdich F, Hecht S et al (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163

    CAS  PubMed  Google Scholar 

  • Rohmer M, Knani M et al (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roth RJ, Acton N (1989) A simple conversion of artemisinic acid into artemisinin. J Nat Prod 52:1183–1185

    CAS  PubMed  Google Scholar 

  • Rynkiewicz MJ, Cane DE et al (2001) Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc Natl Acad Sci USA 98:13543–13548

    CAS  PubMed  Google Scholar 

  • Rynkiewicz MJ, Cane DE et al (2002) X-ray crystal structures of D100E trichodiene synthase and its pyrophosphate complex reveal the basis for terpene product diversity. Biochemistry 41:1732–1741

    CAS  PubMed  Google Scholar 

  • Smit A, Mushegian A (2000) Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway. Genome Res 10:1468–1484

    CAS  PubMed  Google Scholar 

  • Starks CM, Back K et al (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277:1815–1820

    CAS  PubMed  Google Scholar 

  • Steele CL, Crock J et al (1998a) Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem 273:2078–2089

    CAS  PubMed  Google Scholar 

  • Steele CL, Katoh S et al (1998b) Regulation of oleoresinosis in grand fir (Abies grandis): differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in responses to wounding. Plant Physiol 116:1497–1504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szkopinska A, Swiezewska E et al (2000) The regulation of activity of main mevalonic acid pathway enzymes: farnesyl diphosphate synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, and squalene synthase in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 267:473–477

    CAS  PubMed  Google Scholar 

  • Takahashi S, Kuzuyama T et al (1998) A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:9879–9884

    CAS  PubMed  Google Scholar 

  • Tarshis LC, Yan M et al (1994) Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-A resolution. Biochemistry 33:10871–10877

    CAS  PubMed  Google Scholar 

  • Tholl D, Chen F et al (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771

    CAS  PubMed  Google Scholar 

  • Umeno D, Tobias AV et al (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69:51–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veen M, Lang C (2004) Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 63:635–646

    CAS  PubMed  Google Scholar 

  • Vogel BS, Wildung MR et al (1996) Abietadiene synthase from grand fir (Abies grandis): cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis. J Biol Chem 271:23262–23268

    CAS  PubMed  Google Scholar 

  • Walker K, Ketchum REB et al (1999) Partial purification and characterization of acetyl coenzyme A: taxa-4(20),11(12)-dien-5alpha-ol O-acetyl transferase that catalyzes the first acylation step of taxol biosynthesis. Arch Biochem Biophys 364:273–279

    CAS  PubMed  Google Scholar 

  • Wallaart TE, Bouwmeester HJ et al (2001) Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212:460–465

    CAS  PubMed  Google Scholar 

  • Wildung MR, Croteau R (1996) A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J Biol Chem 271:9201–9204

    CAS  PubMed  Google Scholar 

  • Williams DC, Carroll BJ et al (2000) Intramolecular proton transfer in the cyclization of geranylgeranyl diphosphate to the taxadiene precursor of taxol catalyzed by recombinant taxadiene synthase. Chem Biol 7:969–977

    CAS  PubMed  Google Scholar 

  • Yang D, Shipman LW et al (2002) Structure of the Methanococcus jannaschii mevalonate kinase, a member of the GHMP kinase superfamily. J Biol Chem 277:9462–9467

    CAS  PubMed  Google Scholar 

  • Yoshikuni Y, Ferrin TE et al (2006) Designed divergent evolution of enzyme function. Nature 440:1078–1082

    CAS  PubMed  Google Scholar 

  • Yoshioka H, Yamada N et al (1999) cDNA cloning of sesquiterpene cyclase and squalene synthase, and expression of the genes in potato tuber infected with Phytophthora infestans. Plant Cell Physiol 40:993–998

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay D. Keasling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Withers, S.T., Keasling, J.D. Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73, 980–990 (2007). https://doi.org/10.1007/s00253-006-0593-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0593-1

Keywords

Navigation