Skip to main content
Log in

Purification and molecular characterization of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we purified and molecularly characterized a cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. The purified β-galactosidase from strain F2 exhibited high activity at 0°C, and its optimum temperature and pH were 10°C and 8.0, respectively. It was possible to inactivate the β-galactosidase rapidly at 45°C in 5 min. The enzyme was able to hydrolyze lactose as a substrate, as well as o-nitrophenyl-β-d-galactopyranoside (ONPG), the K m values with ONPG and lactose being calculated to be 2.8 mM and 50 mM, respectively, at 10°C. Moreover, the bglA gene encoding the β-galactosidase of strain F2 was cloned and analyzed. The bglA gene consists of a 3,084-bp open reading frame corresponding to a protein of 1,028 amino acid residues. BglAp, the gene product derived from bglA, had several conserved regions for glycosyl hydrolase family 2, e.g., the glycosyl hydrolase 2 (GH2) sugar binding domain, GH2 acid-base catalyst, GH2 triosephosphate isomerase barrel domain, GH2 signature 1, and several other GH2 conserved regions. From these facts, we conclude that the β-galactosidase from A. psychrolactophilus strain F2, which is a new member of glycosyl hydrolase family 2, is a cold-active enzyme that is extremely heat labile and could have advantageous applications in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cieslinski H, Kur J, Bialkowska A, Baran I, Makowski K, Turkiewicz M (2005) Cloning, expression, and purification of a recombinant cold-adapted β-galactosidase from Antarctic bacterium Pseudoalteromonas sp. 22b. Protein Expr Purif 39:27–34

    Article  CAS  Google Scholar 

  • Coker JA, Sheridan PP, Loveland-Curtze JL, Gutshall KR, Auman AJ, Brenchley JE (2003) Biochemical characterization of a beta-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol 185:5473–5482

    Article  CAS  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202

    Article  CAS  Google Scholar 

  • Fernandes S, Geueke B, Delgado O, Coleman J, Hatti-Kaul R (2002) Beta-galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis. Appl Microbiol Biotechnol 58:313–321

    Article  CAS  Google Scholar 

  • Fowler AV, Smith PJ (1983) The active site regions of lacZ and ebg β-galactosidases are homologous. J Biol Chem 258:10204–10207

    CAS  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107

    Article  CAS  Google Scholar 

  • Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, Francois JM, Baise E, Feller G, Gerday C (2001) Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535

    Article  CAS  Google Scholar 

  • Hoyoux A, Blaise V, Collins T, D’Amico S, Gratia E, Huston AL, Marx JC, Sonan G, Zeng Y, Feller G, Gerday C (2004) Extreme catalysts from low-temperature environments. J Biosci Bioeng 98:317–330

    Article  CAS  Google Scholar 

  • Isegawa Y, Sheng J, Sokawa Y, Yamanishi K, Nakagomi O, Ueda S (1992) Selective amplification of cDNA sequence from total RNA by cassette-ligation mediated polymerase chain reaction (PCR): application to sequencing 6.5 kb genome segment of hantavirus strain B-1. Mol Cell Probes 6:467–475

    Article  CAS  Google Scholar 

  • Jacobson RH, Zhang XJ, DuBose RF, Matthews BW (1994) Three-dimensional structure of beta-galactosidase from E. coli. Nature 369:761–766

    Article  CAS  Google Scholar 

  • Karasova-Lipovova P, Strnad H, Spiwok V, Mala S, Kralova B, Russell NJ (2003) The cloning, purification and characterisation of a cold-active β-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2-2. Enzyme Microb Technol 33:836–844

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Loveland J, Gutshall K, Kasmir J, Prema P, Brenchley JE (1994) Characterization of psychrotrophic microorganisms producing beta-galactosidase activities. Appl Environ Microbiol 60:12–18

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14

    Article  CAS  Google Scholar 

  • Marshall CJ (1997) Cold-adapted enzymes. Trends Biotechnol 15:359–364

    Article  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa T, Yamada K, Miyaji T, Tomizuka N (2002) Cold-active pectinolytic activity of psychrophilic-basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. J Biosci Bioeng 94:175–177

    Article  CAS  Google Scholar 

  • Nakagawa T, Fujimoto Y, Uchino M, Miyaji T, Takano K, Tomizuka N (2003) Isolation and characterization of psychrotrophs producing cold-active β-galactosidase. Lett Appl Microbiol 37:154–157

    Article  CAS  Google Scholar 

  • Nakagawa T, Ito T, Fujimura S, Chikui M, Mizumura T, Miyaji T, Yurimoto H, Kato N, Sakai Y, Tomizuka N (2004a) Molecular characterization of glutathione-dependent formaldehyde dehydrogenase gene FLD1 from methylotrophic yeast Pichia methanolica. Yeast 21:429–436

    Article  Google Scholar 

  • Nakagawa T, Nagaoka T, Taniguchi S, Miyaji T, Tomizuka N (2004b) Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. Lett Appl Microbiol 38:383–387

    Article  CAS  Google Scholar 

  • Nakagawa T, Nagaoka T, Miyaji T, Tomizuka N (2005a) A cold-active pectin lyase from psychrophilic-basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. Biotechnol Appl Biochem 42:193–196

    Article  CAS  Google Scholar 

  • Nakagawa T, Nagaoka T, Miyaji T, Tomizuka N (2005b) Cold-active polygalacturonase from psychrophilic-basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. Biosci Biotechnol Biochem 69:419–421

    Article  CAS  Google Scholar 

  • Nakagawa T, Ikehata R, Uchino M, Miyaji T, Takano K, Tomizuka N (2006) Cold-active acid β-galactosidase activity of isolated psychrophilic-basidiomycetous yeast Guehomyces pullulans. Microbiol Res 161:75–79

    Article  CAS  Google Scholar 

  • Russell NJ (1998) Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21

    CAS  PubMed  Google Scholar 

  • Russell NJ (2000) Towards a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90

    Article  CAS  Google Scholar 

  • Sakai Y, Nakagawa T, Shimase M, Kato N (1998) Regulation and physiological role of the DAS1 gene encoding dihydroxyacetone synthase in the methylotrophic yeast Candida boidinii. J Bacteriol 180:5885–5890

    Article  CAS  Google Scholar 

  • Trimbur DE, Gutshall KR, Prema P, Brenchley JE (1994) Characterization of a psychrotrophic Arthrobacter gene and its cold-active beta-galactosidase. Appl Environ Microbiol 60:4544–4552

    Article  CAS  Google Scholar 

  • Triveni PS (1975) Beta-galactosidase technology: a solution to the lactose problem. Crit Rev Food Technol 5:325–354

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Professor Toshihiro Watanabe, Tokyo University of Agriculture, for his help in the amino acid sequence determination. We are also grateful to Ms. Kumiko Sato, Ms. Takae Tamura, Ms. Riwako Shima, and Mr. Takahito Hayashi for their skillful assistance. This research was supported in part by a grant from the Northern Advancement Center for Science & Technology to T.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, T., Fujimoto, Y., Ikehata, R. et al. Purification and molecular characterization of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. Appl Microbiol Biotechnol 72, 720–725 (2006). https://doi.org/10.1007/s00253-006-0339-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0339-0

Keywords

Navigation