Skip to main content
Log in

Characterization of Sphingomonas aldehyde dehydrogenase catalyzing the conversion of various aromatic aldehydes to their carboxylic acids

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An aldehyde dehydrogenase gene, designated phnN, was isolated from a genome library of the 1,4-dimethylnaphthalene-utilizing soil bacterium, Sphingomonas sp. 14DN61. Escherichia coli expressing the phnN gene converted 1,4-dihydroxymethylnaphthalene to 1-hydroxymethyl-4-naphthoic acid. The putative amino acid sequence of the phnN gene product had 31–42% identity with those of NAD+-dependent short-chain aliphatic aldehyde dehydrogenases and a secondary alcohol dehydrogenase. The NAD(P)+-binding site and two consensus sequences involved in the active site for aldehyde dehydrogenase are conserved among these proteins. The PhnN enzyme purified from recombinant E. coli showed broad substrate specificity towards various aromatic aldehydes, i.e., 1- and 2-naphaldehydes, cinnamaldehyde, vanillin, syringaldehyde, benzaldehyde and benzaldehydes substituted with a hydroxyl, methyl, methoxy, chloro, fluoro, or nitro group were converted to their corresponding carboxylic acids. Interestingly, E. coli expressing phnN was able to biotransform a variety of not only aromatic aldehydes, but also aromatic alcohols to carboxylic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Barnsley EA (1988) Metabolism of 2,6-dimethylnaphthalene by flavobacteria. Appl Environ Microbiol 54:428–433

    Article  CAS  Google Scholar 

  • Bramucci M, Singh M, Nagarajan V (2002) Biotransformation of p-xylene and 2,6-dimethylnaphthalene by xylene monooxygenase cloned from a Sphingomonas isolate. Appl Microbiol Biotechnol 59:679–684

    Article  CAS  Google Scholar 

  • Bühler B, Schmid A, Hauer B, Witholt B (2000) Xylene monooxygenase catalyzes the multi-step oxygenation of toluene and pseudocumene to corresponding alcohols, aldehydes, and acids in Escherichia coli JM101. J Biol Chem 275:10085–10092

    Article  Google Scholar 

  • Dutta T, Selifonov S, Gunsalus I (1988) Oxidation of methyl-substituted naphthalenes: pathway in a versatile Sphingomonas paucimobilis strain. Appl Environ Microbiol 64:1884–1889

    Article  Google Scholar 

  • Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB, White DC (1995) Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 61:1917–1922

    Article  CAS  Google Scholar 

  • Hanzawa N, Kanai S, Katsuta A, Nakagawa Y, Yamasato K (1995) 16S rDNA-based phylogenetic analysis of marine flavobacteria. J Mar Biotechnol 3:111–114

    CAS  Google Scholar 

  • Harayama S, Rekik M, Wubbolts M, Rose K, Leppik RA, Timmis K (1989) Characterization of five genes in the upper-pathway operon of TOL plasmid pWW0 from Pseudomonas putida and identification of the gene products. J Bacteriol 171:5048–5055

    Article  CAS  Google Scholar 

  • Hempel J, Nicholas H, Lindahl R (1993) Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework. Protein Sci 2:1890–1900

    Article  CAS  Google Scholar 

  • Hidalgo E, Chen Y-M, Lin ECC, Aguilar J (1991) Molecular cloning and DNA sequencing of the Escherichia coli K-12 ald gene encoding aldehyde dehydrogenase. J Bacteriol 173:6118–6123

    Article  CAS  Google Scholar 

  • Hwang S, Kim SJ, Kim CK, Kim Y, Kim SJ, Kim YC (1999) The phnIJ genes encoding acetaldehyde dehydrogenase (acylating) and 4-hydroxy-2-oxovalerate aldolase in Pseudomonas sp. DJ77 and their evolutionary implications. Biochem Biophys Res Commun 256:469–473

    Article  CAS  Google Scholar 

  • Inoue S, Nakazawa A, Nakazawa T (1981) Molecular cloning of TOL genes xylB and xylE in Escherichia coli. J Bacteriol 145:1137–1143

    Article  Google Scholar 

  • Inoue J, Shaw JP, Rekik M, Harayama S (1995) Overlapping substrate specificities of benzaldehyde dehydrogenase (the xylC gene product) and 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product) encoded by TOL plasmid pWW0 of Pseudomonas putida. J Bacteriol 177:1196–1201

    Article  CAS  Google Scholar 

  • Kasai Y, Shindo K, Harayama S, Misawa N (2003) Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. Appl Environ Microbiol 69:6688–6697

    Article  CAS  Google Scholar 

  • Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128

    Article  CAS  Google Scholar 

  • Laramee L, Lawrence JR, Greer CW (2000) Molecular analysis and development of 16S rRNA oligonucleotide probes to characterize a diclofop-methyl-degrading biofilm consortium. Can J Microbiol 46:133–142

    Article  CAS  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Miyachi N, Tanaka T, Suzuki T, Hotta Y, Oori T (1993) Microbial oxidation of dimethylnaphthalene isomers. Appl Environ Microbiol 59:1504–1506

    Article  CAS  Google Scholar 

  • Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J, Mot R D (1995) Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involved an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 177:676–687

    Article  CAS  Google Scholar 

  • Peng X, Misawa N, Harayama S (2003) Isolation and characterization of thermophilic bacilli degrading cinnamic, 4-coumaric, and ferulic acids. Appl Environ Microbiol 69:1417–1427

    Article  CAS  Google Scholar 

  • Perozich J, Nicholas H, Wang BC, Lindahl R, Hempel J (1999) Relationships within the aldehyde dehydrogenase extended family. Protein Sci 8:137–146

    Article  CAS  Google Scholar 

  • Pinyakong O, Habe H, Yoshida T, Nojiri H, Omori T (2003) Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Commun 301:350–357

    Article  CAS  Google Scholar 

  • Plaggenborg R, Overhage J, Steinbuchel A, Priefert H (2003) Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Appl Microbiol Biotechnol 61:528–535

    Article  CAS  Google Scholar 

  • Priefert H, Kruger N, Jendrossek D, Schmidt B, Steinbuchel A (1992) Identification and molecular characterization of the gene cording for acetaldehyde dehydrogenase II (acoD) of Alcaligenes eutrophus. J Bacteriol 174:899–907

    Article  CAS  Google Scholar 

  • Priefert H, Rabenhorst J, Steinbuchel A (1997) Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J Bacteriol 179:2595–2607

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Scrutton NS, Berry A, Perham R (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:38–43

    Article  CAS  Google Scholar 

  • Shaw JP, Harayama S (1990) Purification and characterisation of TOL plasmid-encoded benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase of Pseudomonas putida. Eur J Biochem 191:705–714

    Article  CAS  Google Scholar 

  • Shaw JP, Schwager F, Harayama S (1992) Substrate-specificity of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase encoded by TOL plasmid pWW0. Metabolic and mechanistic implications. Biochem J 283:789–794

    Article  CAS  Google Scholar 

  • Shaw JP, Rekik M, Schwager F, Harayama S (1993) Kinetic studies on benzyl alcohol dehydrogenase encoded by TOL plasmid pWWO. A member of the zinc-containing long chain alcohol dehydrogenase family. J Biol Chem 268:10842–10850

    CAS  PubMed  Google Scholar 

  • Suzuki M, Hayakawa T, Shaw JP, Rekik M, Harayama S (1991) Primary structure of xylene monooxygenase: similarities to and differences from the alkane hydroxylation system. J Bacteriol 173:1690–1695

    Article  CAS  Google Scholar 

  • Takeuchi M, Kawai F, Shida Y, Yokota A (1993) Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new description of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. System. Appl Microbiol 16:227–238

    Article  CAS  Google Scholar 

  • Teramoto M, Takaichi S, Inomata Y, Ikenaga H, Misawa N (2003) Structural and functional analysis of a lycopene β-monocyclase gene isolated from a unique marine bacterium that produces myxol. FEBS Lett 545:120–126

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Wang Y, Lau PC (1996) Sequence and expression of an isocitrate dehydrogenase-encoding gene from a polycyclic aromatic hydrocarbon oxidizer, Sphingomonas yanoikuyae B1. Gene 168:15–21

    Article  CAS  Google Scholar 

  • Xu J, Johnson RC (1995) aldB, an RpoS-dependent gene in Escherichia coli encoding an aldehyde dehydrogenase that is repressed by Fis and activated by Crp. J Bacteriol 177:3166–3175

    Article  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mai Miura for technical assistance. This work was supported by the Biotechnology and Medical Technology Development Department of the New Energy and Industrial Technology Development Organization of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiko Misawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Shindo, K., Kanoh, K. et al. Characterization of Sphingomonas aldehyde dehydrogenase catalyzing the conversion of various aromatic aldehydes to their carboxylic acids. Appl Microbiol Biotechnol 69, 141–150 (2005). https://doi.org/10.1007/s00253-005-1962-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-1962-x

Keywords

Profiles

  1. Norihiko Misawa