Skip to main content

Advertisement

Log in

The remarkable Rhodococcus erythropolis

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Rhodococcus erythropolis cells contain a large set of enzymes that allow them to carry out an enormous number of bioconversions and degradations. Oxidations, dehydrogenations, epoxidations, hydrolysis, hydroxylations, dehalogenations and desulfurisations have been reported to be performed by R. erythropolis cells or enzymes. This large array of enzymes fully justifies the prospective application of this bacterium in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggelis G, Iconomou D, Christou M, Bokas D, Kotzailias S, Christou G, Tsagou V, Papanikolaou S (2003) Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process. Water Res 37:3897–3904

    Google Scholar 

  • Allen CCR, Boyd DR, Dalton H, Sharma ND, Brannigan I, Kerley NA, Sheldrake GN, Taylor SC (1995) Enantioselective bacterial biotransformation routes to cis-diol metabolites of monosubstituted benzenes, naphthalene and benzocycloalkenes of either absolute configuration. J Chem Soc Chem Commun 2:117–118

    Google Scholar 

  • Amanullah A, Hewitt CJ, Nienow AW, Lee C, Chartrain M, Buckland BC, Drew SW, Woodley JM (2002) Fed-batch bioconversion of indene to cis-indandiol. Enzyme Microb Technol 31:954––967

    Google Scholar 

  • Andreoni V, Bernasconi S, Colombo M, Beilen JB van, Cavalca L (2000) Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ Microbiol 2:572–577

    Google Scholar 

  • Armfield SJ, Sallis PJ, Baker PB, Bull AT, Hardman DJ (1995) Dehalogenation of haloalkanes by Rhodococcus erythropolis Y2. Biodegradation 6:237–246

    CAS  PubMed  Google Scholar 

  • Ashraf W, Mihdhir A, Murrell, JC (1994) Bacterial oxidation of propane. FEMS Microbiol Lett 122:16

    Google Scholar 

  • Ayala M, Tinoco R, Hernandez V, Bremauntz P, Vazquez-Duhalt R (1998) Biocatalytic oxidation of fuel as an alternative to biodesulfurization. Fuel Process Technol 57:101111

    Google Scholar 

  • Barbirato F, Verdoes JC, Bont JAM de, Werf MJ van der (1998) The Rhodococcus erythropolis DCL14 limonene-1,2-epoxide hydrolase gene encodes an enzyme belonging to a novel class of epoxide hydrolases. FEBS Lett 438:293296

    Google Scholar 

  • Beard TM, Page MI (1998) Enantioselective biotransformations using rhodococci. Antonie van Leeuwenhoek 74:99106

    Google Scholar 

  • Bell K, Philp J, Aw D, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195210

    Google Scholar 

  • Boersma MG, Solyanikova IP, Van Berkel WJH, Vervoort J, Golovleva LA, Rietjens IMCM (2001) F-19 NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols. J Ind Microbiol Biotechnol 26:2234

    Google Scholar 

  • Bondar VS, Boersma MG, Golovlev EL, Vervoort J, Van Berkel WJH, Finkelstein ZI, Solyanikova IP, Golovleva LA, Rietjens IMCM (1998) 19F NMR study on the biodegradation of fluorophenols by various Rhodococcus species. Biodegradation 9:475486

    Google Scholar 

  • Borole AP, Kaufman EN, Grossman MJ, Minak-Bernero V, Bare R, Lee MK (2002) Comparison of the emulsion characteristics of Rhodococcus erythropolis and Ecsherichia coli SOXC-5 cells expressing biodesulfurization genes. Biotechnol Prog 18:8893

    Google Scholar 

  • Boswell C (1999) The technology frontier: alkane activation. Chem Market Rep, NY, December 1999

    Google Scholar 

  • Brandão PFB, Clapp JP, Bull AT (2003) Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Appl Environ Microbiol 69:57545766

    Google Scholar 

  • Brown E, Hendler E (1989) Rhodococcus peritonitis in a patient treated with peritoneal dialysis. Am J Kidney Dis 14:417418

    Google Scholar 

  • Buckland BC, Drew SW, Connors NC, Chartrain MM, Lee C, Salmon PM, Gbewonyo K, Zhou W, Gailliot P, Singhvi R, Olewinski RC Jr, Sun W-J, Reddy J, Zhang J, Jackey BA, Taylor C, Goklen KE, Junker B, Greasham RL (1999) Microbial conversion of indene to indandiol: a key intermediate in the synthesis of Crixivan. Metab Eng 1:6374

    Google Scholar 

  • Chartrain M, Jackey B, Taylor C, Sandford V, Gbewonyo K, Lister L, Dimichele L, Hirsch C, Heimbuch B, Maxwell C, Pascoe D, Buckland B, Greasham R (1998) Bioconversion of indene to cis-(lS,2R)-indandiol and trans-(lR,2R)-indandiol by Rhodococcus species. J Ferment Bioeng 86:550558

    Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2002a) Maintenance of cell viability in the biotransformation of (–)-carveol with whole cells of Rhodococcus erythropolis. J Mol Catal B Enzym 19:389398

    Google Scholar 

  • Carvalho CCCR de, Fonseca MMR da (2002b) Influence of reactor configuration on the production of carvone from carveol by whole cells of Rhodococcus erythropolis DCL14. J Mol Catal B Enzym 19:377387

    Google Scholar 

  • Carvalho CCCR de, Fonseca MMR da (2003) A simple method to observe organic solvent drops with a standard optical microscope. Microsc Res Tech 60:465466

    Google Scholar 

  • Carvalho CCCR de, Fonseca MMR da (2004a) Principal component analysis applied to bacterial cell behaviour in the presence of organic solvents. Biocatal Biotransform 22:203214

    Google Scholar 

  • Carvalho CCCR de, Fonseca MMR da (2004b) Solvent toxicity in organic–aqueous systems analysed by multivariate analysis. Bioprocess Biosyst Eng 26:361–375

    Google Scholar 

  • Carvalho CCCR de, Fonseca MMR da (2005) Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol Ecol 51:389–399

    Google Scholar 

  • Carvalho CCCR de, Keulen F van, Fonseca MMR da (2000a) Biotransformation of limonene-1,2-epoxide to limonene-1,2-diol by Rhodococcus erythropolis cells—an introductory approach to selective hydrolysis and product separation. Food Technol Biotechnol 38:181–185

    Google Scholar 

  • Carvalho CCCR de, Keulen F van , Fonseca MMR da (2000b) Production and recovery of limonene-1,2-diol and simultaneous resolution of a diastereomeric mixture of limonene-1,2-epoxide with whole cells of Rhodococcus erythropolis DCL14. Biocatal Biotransform 18:223–235

    Google Scholar 

  • Carvalho CCCR de, Keulen F van, Fonseca MMR da (2002) Modelling the biokinetic resolution of diastereomers present in unequal initial amounts. Tetrahedron Asymm 13:1637–1643

    Article  Google Scholar 

  • Carvalho CCCR de, Cruz A, Pons MN, Pinheiro HM, Cabral JMS, Fonseca MMR da, Fernandes P, Ferreira BS (2004) Mycobacterium sp., Rhodococcus erythropolis and Pseudomonas putida behaviour in the presence of organic solvents. Microsc Res Tech 64:215–222

    Google Scholar 

  • Carvalho CCCR de, Parreño-Marchante B, Neumann G, Fonseca MMR da, Heipieper HJ (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Microbiol Biotechnol DOI 10.1007/s00253-004-1750-z

  • Olmo CH del, Santos VE, Alcon A, Garcia-Ochoa F (2004) Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of operational conditions. Biochem Eng J 22:229–237

    Google Scholar 

  • Dieth S, Tritsch D, Biellmann JF (1995) Resolution of allylic alcohols by cholesterol oxidase isolated from Rhodococcus erythropolis. Tetrahedron Lett 36:2243–2246

    Google Scholar 

  • Duetz WA, Beilen JB van, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425

    Google Scholar 

  • Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30:322–328

    Google Scholar 

  • Effenberger F, Graef BW (1998) Chemo- and enantioselective hydrolysis of nitriles and acid amides, respectively, with resting cells of Rhodococcus sp. C3II and Rhodococcus erythropolis MP50. J Biotechnol 60:165–174

    Google Scholar 

  • Effenberger F, Graef BW, Osswald S (1997) Preparation of (S)-naproxen by enantioselective hydrolysis of racemic naproxen amide with resting cells of Rhodococcus erythropolis MP50 in organic solvents. Tetrahedron Asymm 8:2749–2755

    Google Scholar 

  • Emelyanova EV, Reshetilov AN (2002) Rhodococcus erythropolis as the receptor of cell-based sensor for 2,4-dinitrophenol detection: effect of co-oxidation? Process Biochem 37:683–692

    Google Scholar 

  • Erable B, Maugard T, Goubet I, Lamare S, Legoy MD (2005) Biotransformation of halogenated compounds by lyophilized cells of Rhodococcus erythropolis in a continuous solid–gas biofilter. Process Biochem 40:45–51

    Google Scholar 

  • Finnerty WR (1992) The biology and genetics of the genus Rhodococcus. Annu Rev Microbiol 46:193–218

    Google Scholar 

  • Finnerty WR (1994) Biosurfactants in environmental biotechnology. Curr Opin Biotechnol 5:291–295

    Google Scholar 

  • French JB, Holland G, Holland HL, Gordon HL (2004) A comparative molecular field analysis of the biotransformation of sulfides by Rhodococcus erythropolis. J Mol Catal B Enzym 31:87–96

    Google Scholar 

  • Goetschel R, Barenholz Y, Bar R (1992) Microbial conversions in a liposomal medium. 2. Cholesterol oxidation by Rhodococcus erythropolis. Enzyme Microb Technol 14:390–395

    Google Scholar 

  • Goswami M, Shivaraman N, Singh RP (2004) Microbial metabolism of 2-chlorophenol, phenol and p-cresol by Rhodococcus erythropolis M1 in co-culture with Pseudomonas fluorescens P1. Microbiol Res DOI 10.1016/j.micres.2004.10.004

  • Gotor V, Quirós M, Liz R, Frigola J, Fernández R (1997) Fungal and bacterial regioselective hydroxylation of pyrimidine heterocycles. Tetrahedron 53:6421–6432

    Google Scholar 

  • Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709

    Google Scholar 

  • Griffith M, Ewart KV (1995) Antifreeze proteins and their potential use in frozen foods. Biotechnol Adv 13:375–402

    Google Scholar 

  • Gröger H, Hummel W, Rollmann C, Chamouleau F, Hüsken H, Werner H, Wunderlich C, Abokitse K, Drauzd K, Buchholza S (2004) Preparative asymmetric reduction of ketones in a biphasic medium with an (S)-alcohol dehydrogenase under in situ-cofactor-recycling with a formate dehydrogenase, Tetrahedron 60:633–640

    Google Scholar 

  • Heald SC, Brandão PFB, Hardicre R, Bull AT (2001) Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains. Antonie van Leeuwenhoek 80:169–183

    Google Scholar 

  • Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, Bont JAM de (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415

    Article  CAS  Google Scholar 

  • Hidalgo A, Jaureguibeitia A, Prieto MB, Rodriguez-Fernández C, Serra JL, Llama MJ (2002) Biological treatment of phenolic industrial wastewaters by Rhodococcus erythropolis UPV-1. Enzyme Microb Technol 31:221–226

    Google Scholar 

  • Hirasawa K, Ishii Y, Kobayashi M, Koizumi K, Maruhashi K (2001) Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci Biotechnol Biochem 65:239–246

    Google Scholar 

  • Hirrlinger B, Stolz A, Knackmuss HJ (1996) Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2-arylpropionamides. J Bacteriol 178:3501–3507

    Google Scholar 

  • Holland HL, Brown FM, Kerridge A, Pienkos P, Arensdor J (2003) Biotransformation of sulfides by Rhodocoeccus erythropolis. J Mol Catal B Enzym 22:219–223

    Google Scholar 

  • Jadoun J, Bar R (1993a) Microbial transformations in a cyclodextrin medium. 3. Cholesterol oxidation by Rhodococcus erythropolis. Appl Microbiol Biotechnol 40:230–240

    Google Scholar 

  • Jadoun J, Bar R (1993b) Microbial transformations in a cyclodextrin medium. 4. Enzyme vs microbial oxidation of cholesterol. Appl Microbiol Biotechnol 40:477–482

    Google Scholar 

  • Janssen DB, Oppentocht JE, Poelarends GP (2001) Microbial dehalogenation. Curr Opin Biotechnol 12:254–258

    Google Scholar 

  • Katsivela E, Bonse D, Kruger A, Strompl C, Livingston A, Wittich RM (1999) An extractive membrane biofilm reactor for degradation of 1,3-dichloropropene in industrial waste water. Appl Microbiol Biotechnol 52:853–862

    Google Scholar 

  • Kayser KJ, Bielaga-Jones BA, Jackowski K, Odusan O, Kilbane JJ (1993) Utilization of organosulphur compounds by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8. J Gen Microbiol 139:3123–3129

    Google Scholar 

  • Kobayashi M, Shimizu S (2000) Nitrile hydrolases. Curr Opin Chem Biol 4:95–102

    Google Scholar 

  • Kulikova AK, Bezborodov AM (1999) Ethylene epoxidation by native and immobilized cells of the propane-assimilating culture Rhodococcus erythropolis 3/89. Appl Biochem Microbiol 35:543–547

    Google Scholar 

  • Kulikova AK, Bezborodov AM (2000) Oxidation of organic compounds by propane monooxygenase of Rhodococcus erythropolis 3/89. Appl Biochem Microbiol 36:227–230

    Google Scholar 

  • Kulikova AK, Bezborodov AM (2001) Assimilation of propane and characterization of propane monooxygenase from Rhodococcus erythropolis 3/89. Appl Biochem Microbiol 37:164–167

    Google Scholar 

  • Kumar I, Manju K, Jolly RS (2001) A new biocatalyst for the preparation of enantiomerically pure 2-arylpropanoic acids. Tetrahedron Asymm 12:1431–1434

    Google Scholar 

  • Kurane R, Tomizuka N (1992) Towards new biomaterial produced by microorganism—bioflocculant and bioabsorbent. Nippon Kagaku Kaishi 5:453–463

    Google Scholar 

  • Langdahl BR, Bisp P, Ingoorsen K (1996) Nitrile hydrolysis by Rhodococcus erythropolis BL1, an acetonitrile-tolerant strain isolated from a marine sediment. Microbiology 142:145–154

    Google Scholar 

  • Layh N, Knackmuss HJ, Stolz A (1995) Enantioselective hydrolysis of ketoprofen amide by Rhodococcus sp. C3II and Rhodococcus erythropolis MP-50. Biotechnol Lett 17:187–192

    Google Scholar 

  • Margesin R, Labbé D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092

    Google Scholar 

  • Matsubara T, Ohshiro T, Nishina Y, Izumi Y (2001) Purification, characterization and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl Environ Microbiol 67:1179–1184

    Google Scholar 

  • Mischitz M, Hackinger A, Francesconi I, Faber K (1994) Enzyme-triggered opening of an epoxide—chemoenzymatic synthesis of (2R,5R)-pityol and (2S,5R)-pityol. Tetrahedron 50:8661–8664

    Google Scholar 

  • Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J, Demot R (1995) Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome-P-450 system and aldehyde dehydrogenase. J Bacteriol 177:676–687

    Google Scholar 

  • Nakayama N, Matsubara T, Ohshiro T, Moroto Y, Kawata Y, Koizumi K, Hirakawa Y, Suzuki M, Maruhashi K, Izumi Y, Kurane R (2002) A novel enzyme, 2α-hydroxybiphenyl-2-sulfinate desulfinase (DszB), from a dibenzothiophene-desulfurizing bacterium Rhodococcus erythropolis KA2-5-1: gene overexpression and enzyme characterization. Biochim Biophys Acta 1598:122–130

    Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with surfaces. Microbiol Rev 60:151–166

    Google Scholar 

  • O’Brien XM, Parker JA, Lessard PA, Sinskey AJ (2002) Engineering an indene bioconversion process for the production of cis-aminoindanol: a model system for the production of chiral synthons. Appl Microbiol Biotechnol 59:389–399

    Google Scholar 

  • Ohshiro T, Izumi Y (1999) Microbial desulfurization of organic sulfur compounds in petroleum. Biosci Biotechnol Biochem 63:1–9

    Google Scholar 

  • Ohshiro T, Suzuki K, Izumi Y (1997) Dibenzothiophene (DBT) degrading enzyme responsible for the first step of DBT desulfurization by Rhodococcus erythropolis D-1: purification and characterization. J Ferment Bioeng 83:233–237

    Article  Google Scholar 

  • Ohshiro T, Kojima T, Torii K, Kawasoe H, Izumi Y (1999) Purification and characterization of dibenzothiophene (DBT) sulfone monooxygenase, an enzyme involved in DBT desulfurization, from Rhodococcus erythropolis D-1. J Biosci Bioeng 88:610–616

    Google Scholar 

  • Onaka T, Kobayashi M, Ishii Y, Konishi J, Maruhashi K (2001) Selective cleavage of the two C–S bonds in asymmetrically alkylated dibenzothiophenes by Rhodococcus erythropolis KA2-5-1. J Biosci Bioeng 92:80–82

    Google Scholar 

  • Osprian I, Fechter MH, Griengl H (2003) Biocatalytic hydrolysis of cyanohydrins: an efficient approach to enantiopure α-hydroxyl carboxylic acids. J Mol Catal B Enzym 24/25:89–98

    Google Scholar 

  • Overbeeke PLA, Schenkels P, Secundo F, Jongejan JA (2003) Biocatalytic synthesis of cyclopropanol from cyclopropyl methyl ketone using whole cells of Rhodococcus erythropolis. J Mol Catal B Enzym 21:51–53

    Google Scholar 

  • Pienkos PT (1998) Choosing the best platform for the biotransformation of hydrophobic molecules. Proc Int Symp Microb Ecol 8

  • Poelarends GJ, Kulakov LA, Larkin MJ, Vlieg JETH, Janssen DB (2000) Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways. J Bacteriol 182:2191–2199

    Google Scholar 

  • Prieto MB, Hidalgo A, Serra JL, Llama MJ (2002) Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite® in a packed-bed reactor. J Biotechnol 97:1–11

    Google Scholar 

  • Schenkels P, Duine JA (2000) Nicotinoprotein (NADH-containing) alcohol dehydrogenase from Rhodococcus erythropolis DSM 1069: an efficient catalyst for coenzyme-independent oxidation of a broad spectrum of alcohols and the inversion of alcohols and aldehydes. Microbiology 146:775–785

    Google Scholar 

  • Schenkels P, De Vries S, Straathof AJJ (2001) Scope and limitations of the use of nicotinoprotein alcohol dehydrogenase for the coenzyme-free production of enantiopure fine-chemicals. Biocatal Biotransform 19:191–212

    Google Scholar 

  • Sokolovská I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027

    Article  PubMed  Google Scholar 

  • Stolz A, Trott S, Binder M, Bauer R, Hirrlinger B, Layh N, Knackmuss HJ (1998) Enantioselective nitrile hydratases and amidases from different bacterial isolates. J Mol Catal B Enzym 5:137–141

    Google Scholar 

  • Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Google Scholar 

  • Suemori A, Nakajima K, Kurane R, Nakamura Y (1996) Purification and characterization of o-hydroxyphenylacetate 5-hydroxylase, m-hydroxyphenylacetate 6-hydroxylase and p-hydroxyphenylacetate 1-hydroxylase from Rhodococcus erythropolis. J Ferment Bioeng 81:133–137

    Google Scholar 

  • Beilen JB van, Neuenschwander M, Smits THM, Roth C, Balada SB, Witholt B (2002) Rubredoxins involved in alkane oxidation. J Bacteriol 184:1722–1732

    Google Scholar 

  • Geize R van der, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261

    Google Scholar 

  • Geize R van der, Hessels GI, Dijkhuizen L (2002a) Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Delta(1)-dehydrogenase isoenzyme. Microbiology 148:3285–3292

    Google Scholar 

  • Geize R van der, Hessels GI, Gerwen R van, Meijden R van der, Dijkhuizen L (2002b) Molecular and functional characterisation of kshA and kshB, encoding two components of 3-ketosteroid 9 alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol Microbiol 45:1007–1018

    Google Scholar 

  • Vlugt-Bergmans C van der, Werf MJ van der (2001) Genetic and biochemical characterization of a novel monoterpene epsilon—lactone hydrolase from Rhodococcus erythropolis DCL14. Appl Environ Microbiol 67:733–741

    Google Scholar 

  • Werf MJ van der, Boot AM (2000) Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146:1129–1141

    Google Scholar 

  • Werf MJ van der, Swarts HJ, Bont JAM de (1999a) Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl Environ Microbiol 65:2092–2102

    Google Scholar 

  • Werf MJ van der, Ven C van der, Barbirato F, Eppink MHM, Bont JAM de, Van Berkel WJH (1999b) Stereoselective carveol dehydrogenase from Rhodococcus erythropolis DCL14—a novel nicotinoprotein belonging to the short chain dehydrogenase/reductase superfamily. J Biol Chem 274:26296–26304

    Article  PubMed  Google Scholar 

  • Werf MJ van der, Orru RVA, Overkamp KM, Swarts HJ, Osprian I, Steinreiber A, Bont JAM de, Faber K (1999c) Substrate specificity and stereospecificity of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14; an enzyme showing sequential and enantioconvergent substrate conversion. Appl Microbiol Biotechnol 52:380–385

    Google Scholar 

  • Vazquez-Duhalt R, Torres E, Valderrama B, Le Borgne S (2002) Will biochemical catalysis impact the petroleum refining industry? Energy Fuels 16:1239–1250

    Google Scholar 

  • Vernazza PL, Bodmer T, Galeazzi RL (1991) Rhodococcus erythropolis infection in HIV-associated immunodeficiency. Schweiz Med Wochenschr 121:1095–1098

    Google Scholar 

  • Wang P, Krawiec S (1996) Kinetic analyses of desulfurization of dibenzothiophene by Rhodococcus erythropolis in batch and fed-batch cultures. Appl Environ Microbiol 62:1670–1675

    Google Scholar 

  • Wang P, Humphrey AE, Krawiec S (1996) Kinetic analyses of desulfurization of dibenzothiophene by Rhodococcus erythropolis in continuous cultures. Appl Environ Microbiol 62:3066–3068

    Google Scholar 

  • Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73

    Google Scholar 

  • Whyte LG, Schultz A, van Beilen JB, Luz AP, Pellizari D, Labbé D, Greer CW (2002a) Prevalence of alkane monooxygenase genes in arctic and antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150

    Google Scholar 

  • Whyte LG, Smits THM, Labbé D, Witholt B, Greer CW, Beilen JB van (2002b) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 12:5933–5942

    Google Scholar 

  • Yan H, Kishimoto M, Omasa T, Katakura Y, Suga K, Okumura K, Yoshikawa O (2000) Increase in desulfurization activity of Rhodococcus erythropolis KA2-5-1 using ethanol feeding. J Biosci Bioeng 89:361–366

    Google Scholar 

  • Yoshikawa O, Ishii Y, Koizumi K, Ohshiro T, Izumi Y, Maruhashi K (2002) Enhancement and stabilization of desulfurization activity of Rhodococcus erythropolis KA2-5-1 by feeding ethanol and sulfur compounds. J Biosci Biotechnol 94:447–452

    Google Scholar 

  • Zaks A (2001) Industrial biocatalysis. Curr Opin Chem Biol 5:130–136

    Google Scholar 

Download references

Acknowledgements

This work was supported by a PhD grant (PRAXIS XXI/BD/21574/99) and a post-doctoral grant (SFRH/BPD/14426/2003) awarded to C.C.C.R.C. by the Fundação para a Ciência e a Tecnologia, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla C. C. R. de Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Carvalho, C.C.C.R., da Fonseca, M.M.R. The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67, 715–726 (2005). https://doi.org/10.1007/s00253-005-1932-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-1932-3

Keywords

Navigation