Skip to main content

Aluminum- and mild steel-binding peptides from phage display

Abstract

Using a phage library displaying random peptides of 12 amino acids on its surface, several peptides were found that bind to aluminum and mild steel. Like other metal-binding peptides, no obvious consensus motif has been found for these peptides. However, most of them are rich in hydroxyl-containing amino acids, serine or threonine, or contain histidine. For the aluminum-binding peptides, peptides with a higher number of hydroxyl-containing amino acids bind to the aluminum surface more tightly. For example, Val-Pro-Ser-Ser-Gly-Pro-Gln-Asp-Thr-Arg-Thr-Thr, which contains five hydroxyl-containing amino acid residues, was selected four-fold more frequently than a peptide containing only one serine, suggesting an important role for the hydroxyl-containing amino acids in the metal–peptide interaction.

This is a preview of subscription content, access via your institution.

References

  1. Bae W, Chen W, Mulchandani A, Mehra RK (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70:518–524

    Article  PubMed  CAS  Google Scholar 

  2. Beitle RR, Ataai MM (1993) One-step purification of a model periplasmic protein from inclusion bodies by its fusion to an effective metal-binding peptide. Biotechnol Prog 9:64–69

    Article  PubMed  CAS  Google Scholar 

  3. Brown S (1997) Metal-recognition by repeating polypeptides. Nat Biotechnol 15:269–272

    Article  PubMed  CAS  Google Scholar 

  4. Canada KA, Iwashita S, Shim H, Wood TK (2002) Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J Bacteriol 184:344–349

    PubMed  Article  CAS  Google Scholar 

  5. DeSilva TM, Veglia G, Porcelli F, Prantner AM, Opella SJ (2002) Selectivity in heavy metal-binding to peptides and proteins. Biopolymers 64:189–197

    Article  PubMed  CAS  Google Scholar 

  6. Flynn CE, Lee S-W, Peelle BR, Belcher AM (2003a) Viruses as vehicles for growth, organization and assembly of materials. Acta Mater 51:5867–5880

    Article  CAS  Google Scholar 

  7. Flynn CE, Mao C, Hayhurst A, Williams JL, Georgiou G, Iverson B, Belcher AM (2003b) Synthesis and organization of nanoscale II–VI semiconductor materials using evolved peptide specificity and viral capsid assembly. J Mater Chem 13:2414–2421

    Article  CAS  Google Scholar 

  8. Hoogenboom HR, Chames P (2000) Natural and designer binding sites made by phage display technology. Immunol Today 21:371–378

    Article  PubMed  CAS  Google Scholar 

  9. Jayaraman A, Cheng ET, Earthman JC, Wood TK (1997a) Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion. Appl Microbiol Biotechnol 48:11–17

    Article  PubMed  CAS  Google Scholar 

  10. Jayaraman A, Cheng ET, Earthman JC, Wood TK (1997b) Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms. J Ind Microbiol Biotechnol 18:396–401

    Article  PubMed  CAS  Google Scholar 

  11. Jayaraman A, Earthman JC, Wood TK (1997c) Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Appl Microbiol Biotechnol 47:62–68

    Article  CAS  Google Scholar 

  12. Jayaraman A, Hallock PJ, Carson RM, Lee C-C, Mansfeld FB, Wood TK (1999a) Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Appl Microbiol Biotechnol 52:267–275

    Article  PubMed  CAS  Google Scholar 

  13. Jayaraman A, Mansfeld FB, Wood TK (1999b) Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin. J Ind Microbiol Biotechnol 22:167–175

    Article  CAS  Google Scholar 

  14. Jayaraman A, Örnek D, Duarte DA, Lee C-C, Mansfeld FB, Wood TK (1999c) Axenic aerobic biofilms inhibit corrosion of copper and aluminum. Appl Microbiol Biotechnol 52:787–790

    Article  PubMed  CAS  Google Scholar 

  15. Koch GH, Brongers MPH, Thompson NG, Virmani YP, Payer JH (2001) Corrosion costs and preventive strategies in the United States. (Report FHWA-RD-01-156) FHWA, Washington, D.C.

  16. Kotrba P, Delečková L, De Lorenzo V, Ruml T (1999) Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl Environ Microbiol 65:1092–1098

    PubMed  CAS  Google Scholar 

  17. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  18. Manoutcharian K, Gevorkian G, Cano A, Almagro JC (2001) Phage displayed biomolecules as preventive and therapeutic agents. Curr Pharm Biotechnol 2:217–223

    Article  PubMed  CAS  Google Scholar 

  19. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G, Iverson B, Belcher AM (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci USA 100:6946–6951

    Article  PubMed  CAS  Google Scholar 

  20. Matsubara T, Hiura Y, Kawahito O, Yasuzawa M, Kawashiro K (2003) Selection of novel structural zinc sites from a random peptide library. FEBS Lett 555:317–321

    Article  PubMed  CAS  Google Scholar 

  21. Matzapetakis M, Farrer BT, Weng T-C, Hemmingsen L, Penner-Hahn JE, Pecoraro VL (2002) Comparison of the binding of cadmium(II), mercury(II), and arsenic(III) to the de novo designed peptides TRI L12C and TRI L16C. J Am Chem Soc 124:8042–8054

    Article  PubMed  CAS  Google Scholar 

  22. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172

    Article  PubMed  CAS  Google Scholar 

  23. Nam KT, Peelle BR, Lee S-W, Belcher AM (2004) Genetically driven assembly of nanorings based on the M13 virus. Nano Lett 4:23–27

    Article  CAS  Google Scholar 

  24. Örnek D, Jayaraman A, Syrett BC, Hsu C-H, Mansfeld FB, Wood TK (2002a) Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or γ-polyglutamate. Appl Microbiol Biotechnol 58:651–657

    Article  PubMed  CAS  Google Scholar 

  25. Örnek D, Wood TK, Hsu CH, Mansfeld F (2002b) Corrosion control using regenerative biofilms (CCURB) on brass in different media. Corros Sci 44:2291–2302

    Article  Google Scholar 

  26. Patwardhan AV, Goud GN, Koepsel RR, Ataai MM (1997) Selection of optimum affinity tags from a phage-displayed peptide library. Application to immobilized copper(II) affinity chromatography. J Chromatogr A 787:91–100

    Article  PubMed  CAS  Google Scholar 

  27. Pazirandeh M, Wells BM, Ryan RL (1998) Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl Environ Microbiol 64:4068–4072

    PubMed  CAS  Google Scholar 

  28. Petrenko VA, Vodyanoy VJ (2003) Phage display for detection of biological threat agents. J Microbiol Methods 53:253–262

    Article  PubMed  CAS  Google Scholar 

  29. Potekhina JS, Sherisheva NG, Povetkina LP, Pospelov AP, Rakitina TA, Warnecke F, Gottschalk G (1999) Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Appl Microbiol Biotechnol 52:639–646

    Article  CAS  Google Scholar 

  30. Samuelson P, Wernérus H, Svedberg M, Ståhl S (2000) Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl Environ Microbiol 66:1243–1248

    Article  PubMed  CAS  Google Scholar 

  31. Satoh M, Karaki E, Kakehashi M, Okazaki E, Gotoh T, Oyama Y(1999) Heavy-metal induced changes in nonproteinaceous thiol levels and heavy-metal binding peptide in Tetraselmis tetrathele (Prasinophyceae). J Phycol 35:989–994

    Article  CAS  Google Scholar 

  32. Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249:386–390

    PubMed  Article  CAS  Google Scholar 

  33. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    PubMed  Article  CAS  Google Scholar 

  34. Sousa C, Kotrba P, Rumi T, Cebolla A, De Lorenzo V (1998) Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J Bacteriol 180:2280–2284

    PubMed  CAS  Google Scholar 

  35. Volz J, Bosch FU, Wunderlin M, Schuhmacher M, Melchers K, Bensch K, Steinhilber W, Schafer KP, Toth G, Penke B, Przybylski M (1998) Molecular characterization of metal-binding polypeptide domains by electrospray ionization mass spectrometry and metal chelate affinity chromatography. J Chromatogr A 800:29–37

    Article  PubMed  CAS  Google Scholar 

  36. Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405:665–668

    Article  PubMed  CAS  Google Scholar 

  37. Wilson DR, Finlay BB (1998) Phage display: applications, innovations, and issues in phage and host biology. Can J Microbiol 44:313–329

    Article  PubMed  CAS  Google Scholar 

  38. Xu Z, Lee SY (1999) Display of polyhistidine peptides on the Escherichia coli cell surface by using outer membrane protein C as an anchoring motif. Appl Environ Microbiol 65:5142–5147

    PubMed  CAS  Google Scholar 

  39. Zuo R, Wood TK (2004) Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms. Appl Microbiol Biotechnol 65:747–753

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Electric Power Research Institute (contract WO8044-0).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas K. Wood.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zuo, R., Örnek, D. & Wood, T.K. Aluminum- and mild steel-binding peptides from phage display. Appl Microbiol Biotechnol 68, 505–509 (2005). https://doi.org/10.1007/s00253-005-1922-5

Download citation

Keywords

  • Mild Steel
  • Phage Display
  • Peptide Library
  • Phage Display Peptide Library
  • Random Peptide Library