Applied Microbiology and Biotechnology

, Volume 68, Issue 3, pp 316–321 | Cite as

An on-line technique for monitoring propionic acid fermentation

  • Houda Benjelloun
  • Alice Rochex
  • Didier Lecouturier
  • Siham Dechemi
  • Jean-Michel Lebeault
Biotechnological Products and Process Engineering


An on-line technique, based on measuring the increase in pressure due to CO2 release in a closed air-tight reactor, was used to evaluate the fermentation of lactate by propionibacteria. The method was applied to batch cultures of Propionibacterium shermanii grown in yeast extract/sodium lactate medium containing lactate as a carbon source under micro-aerophilic conditions. Gas pressure evolution was compared both with substrate consumption and metabolites production and with acidification and growth. Linear relationships were found between gas pressure variation, lactate consumption and propionate and acetate production. The technique also enabled the evaluation of total CO2 produced, by taking account of pressure, oxygen and pH measurements. These results tend to show that this simple and rapid method could be useful to monitor propionic acid bacteria growth.


Fermentation Oxygen Transfer Rate Succinate Production Propionic Acid Production Propionic Acid Bacterium 


  1. Bosset JO, Pauchard JP, Flueckiger E, Blanc B (1980) Nouvelle méthode de dosage du gaz carbonique dans les produits alimentaires et application au fromage. Anal Chim Acta 115:315–321CrossRefGoogle Scholar
  2. Brendehaug J, Langsrud T (1985) Amino acid metabolism in propionibacteria: resting cells experiments with four strains. J Dairy Sci 68:281–289Google Scholar
  3. Cogne G, Lasseur Ch, Cornet JF, Dussap CG, Gros JB (2001) Growth monitoring of a photosynthetic micro-organism (Spirulina platensis) by pressure measurement. Biotechnol Lett 23:1309–1314CrossRefGoogle Scholar
  4. Crow VL (1986) Metabolism of aspartate by Propionibacterium freudenreichii subsp shermanii. Effect on lactate fermentation. Appl Environ Microbiol 53:1885–1892Google Scholar
  5. Cummins CS, Johnson JL (1986) Propionibacterium. In: Sneath PH, Mair NS, Sharpe HE, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1346–1353Google Scholar
  6. De Vries W, wijck-Kapteijn WMC van, Stouthamer AH (1972) Influence of oxygen on growth, cytochrome synthesis and fermentation pattern in propionic acid bacteria. J Gen Microbiol 71:515–524Google Scholar
  7. Dijkhuizen L, Schlegel HG (1987) The biochemical basis of carbon dioxide requirement. Proc Eur Congr Biotechnol 4:643–646Google Scholar
  8. Dixon NM, Kell DB (1989) The inhibition by CO2 on the growth and metabolism of microorganisms. J Appl Bacteriol 67:109–136PubMedGoogle Scholar
  9. Frick R, Junker B (1999) Indirect methods for characterization of carbon dioxide levels in fermentation broth. J Biosci Bioeng 87:344–351CrossRefGoogle Scholar
  10. Girard F, Boyaval P (1994) Carbon dioxide measurement in Swiss-type cheeses by coupling extraction and gas chromatography. Lait 74:389–398Google Scholar
  11. Hettinga DH, Reinbold GW (1972) The propionic acid bacteria, a review. II. Metabolism. J Milk Food Technol 35:358–372Google Scholar
  12. Jones RP, Greenfield PF (1982) Effect of carbon dioxide on yeast growth and fermentation. Enzyme Microb Technol 4:210–223CrossRefGoogle Scholar
  13. Kerjean R, Condon S, Lodi R, Kalantzopoulos G, Chamba JF, Suomalainen T, Cogan T, Moreau D (2000) Improving the quality of European hard-cheeses by controlling of interactions between lactic acid bacteria and propionibacteria. Food Res Int 33:281–287CrossRefGoogle Scholar
  14. Pritchard GG, Wimpenny JWT, Morris HA, Lewis MWA, Hughes DE (1977) Effects of oxygen on Propionibacterium shermanii grown in continuous culture. J Gen Microbiol 102:223–233Google Scholar
  15. Quesada-Chanto A, Silveira MM, Schmid-Meyer AC, Schroeder AG, Da Costa JPCL, Lopez J, Carvalho-Jonas MF, Artolozaga MJ, Jonas R (1998) Effect of the oxygen supply on pattern of growth and corrinoid and organic acids production of propionibacterium shermaniii. World Journal of Microbiology and Biotechnology 14:843–846CrossRefGoogle Scholar
  16. Scofield P, Pell AN (1995) Validity of using accumulated gas pressure readings to measure forage digestion in vitro: a comparison involving three forages. J Dairy Sci 78:2230–2238PubMedGoogle Scholar
  17. Shang L, Jiang M, Ryu CH, Chang HN, Cho SH, Lee JW (2003) Inhibitory effect of carbon dioxide on the fed-batch culture of Ralstonia eutropha: evaluation by CO2 pulse injection and autogenous CO2. Methods Biotechnol Bioeng 83:312–320CrossRefGoogle Scholar
  18. Weast RC, Astle MJ, Beyer WH (1988) CRC handbook of chemistry and physics, 68th edn. CRC, Boca Raton, p. D-163Google Scholar
  19. Wick M, Lebeault J-M (2001) Pressure measurement to evaluate ethanol or lactic acid production during glucose fermentation by yeast or heterofermentative bacteria in pure and mixed culture. Appl Microbiol Biotechnol 56:687–692CrossRefGoogle Scholar
  20. Wick M, Vanhoute J-J, Adhemard A, Turini G, Lebeault (2001) Automatic method for evaluating the activity of sourdough strains based on gas pressure measurements. Appl Microbiol Biotechnol 55:362–368CrossRefGoogle Scholar
  21. Wick M, Stoltz P, Bocker G, Lebeault J-M (2003) Influence of several process parameters on sourdough fermentation. Acta Biotechnol 23:51–61CrossRefGoogle Scholar
  22. Wood HG (1981) Metabolic cycles in the fermentation by propionic acid bacteria. Curr Top Cell Regul 18:255–287Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Houda Benjelloun
    • 1
  • Alice Rochex
    • 1
  • Didier Lecouturier
    • 1
  • Siham Dechemi
    • 1
  • Jean-Michel Lebeault
    • 1
  1. 1.Laboratoire Génie des Procédés Industriels UMR CNRS 6067, Département Génie Chimique, Centre de Recherche de RoyallieuUniversité de Technologie de CompiègneCompiègneFrance

Personalised recommendations