Polyhedral organelles compartmenting bacterial metabolic processes

Abstract

Bacterial polyhedral organelles are extremely large macromolecular complexes consisting of metabolic enzymes encased within a multiprotein shell that is somewhat reminiscent of a viral capsid. Recent investigations suggest that polyhedral organelles are widely used by bacteria for optimizing metabolic processes. The distribution and diversity of these unique structures has been underestimated because many are not formed during growth on standard laboratory media and because electron microscopy is required for their observation. However, recent physiological studies and genomic analyses tentatively indicate seven functionally distinct organelles distributed among over 40 genera of bacteria. Functional studies conducted thus far are consistent with the idea that polyhedral organelles act as microcompartments that enhance metabolic processes by selectively concentrating specific metabolites. Relatively little is known about how this is achieved at the molecular level. Possible mechanisms include regulation of enzyme activity or efficiency, substrate channeling, a selectively permeable protein shell, and/or differential solubility of metabolites within the organelle. Given their complexity and distinctive structure, it would not be surprising if aspects of their biochemical mechanism are unique. Therefore, the unusual structure of polyhedral organelles raises intriguing questions about their assembly, turnover, and molecular evolution, very little of which is understood.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abeles RH, Lee HA (1961) Intramolecular oxidation-reduction requiring a cobamide coenzyme. J Biol Chem 236:2347–2350

    PubMed  CAS  Google Scholar 

  2. Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  PubMed  CAS  Google Scholar 

  3. Badger MR, Kaplan A, Berry JA (1980) Internal inorganic carbon pool of Chlamydomonas reinhardtii. Plant Physiol 66:407–413

    CAS  Google Scholar 

  4. Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173

    Article  CAS  Google Scholar 

  5. Baker SH, Lorbach SC, Rodriguez-Buey M, Williams DS, Aldrich HC, Shively JM (1999) The correlation of the gene csoS2 of the carboxysome operon with two polypeptides of the carboxysome in Thiobacillus neapolitanus. Arch Microbiol 172:233–239

    Article  PubMed  CAS  Google Scholar 

  6. Berry JA, Kaplan A, Badger M (1978) Evidence for a CO2 concentrating mechanism in alga Chlamydomonas reinhardtii. Plant Physiol 61:38

    Google Scholar 

  7. Beudeker RF, Cannon GC, Kuenen JG, Shively JM (1979) Relations between d-ribulose-1,5-bisphosphate carboxylase, carboxysomes and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat. Arch Microbiol 124:185–189

    Article  Google Scholar 

  8. Bobik TA, Ailion ME, Roth JR (1992) A single regulatory gene integrates control of vitamin B12 synthesis and propanediol degradation. J Bacteriol 174:2253–2266

    PubMed  CAS  Google Scholar 

  9. Bobik TA, Xu Y, Jeter RM, Otto KE, Roth JR (1997) Propanediol utilization genes (pdu) of Salmonella typhimurium: three genes for the propanediol dehydratase. J Bacteriol 179:6633–6639

    PubMed  CAS  Google Scholar 

  10. Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC (1999) The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for the formation of polyhedral organelles involved in coenzyme B12-dependent 1,2-propanediol degradation. J Bacteriol 181:5967–5975

    PubMed  CAS  Google Scholar 

  11. Brady RO, Castanera EG, Barker HA (1962) The enzymatic synthesis of cobamide coenzymes. J Biol Chem 237:2325–2332

    PubMed  CAS  Google Scholar 

  12. Brinsmade SR, Paldon T, Escalante-Semerena JC (2005) Minimal functions and physiological conditions required for growth of Salmonella enterica on ethanolamine in the absence of the metabolosome. J Bacteriol 187:8039–8046

    Article  PubMed  CAS  Google Scholar 

  13. Cannon GC, Shively JM (1983) Characterization of a homogenous preparation of carboxysomes from Thiobacillus neapolitanus. Arch Microbiol 134:52–59

    Article  CAS  Google Scholar 

  14. Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM (2001) Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 67:5351–6361

    Article  PubMed  CAS  Google Scholar 

  15. Cannon GC, Heinhorst S, Bradburne CE, Shively JM (2002) Carboxysome genomics: a status report. Funct Plant Biol 29:175–182

    Article  CAS  Google Scholar 

  16. Chang GW, Chang JT (1975) Evidence for the B12-dependent enzyme ethanolamine deaminase in Salmonella. Nature (Lond) 254:150–151

    Article  CAS  Google Scholar 

  17. Chen P, Andersson D, Roth JR (1994) The control region of the pdu/cob regulon in Salmonella typhimurium. J Bacteriol 176:5474–5482

    PubMed  CAS  Google Scholar 

  18. English RS, Lorbach SC, Qin X, Shively JM (1994) Isolation and characterization of a carboxysome shell gene from Thiobacillus neapolitanus. Mol Microbiol 12:647–654

    Article  CAS  Google Scholar 

  19. English RS, Jin S, Shively JM (1995) Use of electroporation to generate a Thiobacillus neapolitanus carboxysome mutant. Appl Environ Microbiol 61:3256–3260

    PubMed  CAS  Google Scholar 

  20. Friedberg D, Kaplan A, Ariel R, Kessel M, Seijffers J (1989) The 5′-flanking region of the gene encoding the large subunit of ribulose-1,5-biosphosphate carboxylase/oxygenase is crucial for growth of the cyanobacterium Synechococcus sp. strain PCC 7942 at the level of CO2 in air. J Bacteriol 171:6069–6076

    PubMed  CAS  Google Scholar 

  21. Friedmann (1975) Biosynthesis of corrinoids. In: Babior BM (ed) Cobalamin. Wiley, New York, pp 75–103

    Google Scholar 

  22. Fukuzawa H, Suzuki E, Komukai Y, Miyachi S (1992) A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci U S A 89:4437–4441

    PubMed  Article  CAS  Google Scholar 

  23. Gantt E, Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97:1486–1493

    PubMed  CAS  Google Scholar 

  24. Havemann GD, Bobik TA (2003) Protein content of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. J Bacteriol 185:5086–5095

    Article  PubMed  CAS  Google Scholar 

  25. Havemann GD, Sampson EM, Bobik TA (2002) PduA is a shell protein of polyhedral organelles involved in the coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. J Bacteriol 184:1253–1261

    PubMed  CAS  Google Scholar 

  26. Holthuijzen YA, Breemen JFL, Kuenen GJ, Konings WN (1986) Protein composition of the carboxysomes of Thiobacillus neapolitanis. Arch Microbiol 144:398–404

    Article  CAS  Google Scholar 

  27. Holthuijzen YA, Kuenen JG, Konings WN (1987) Activity of ribulose-1,5-bisphosphate carboxylase in intact and disrupted carboxysomes of Thiobacillus neapolitanus. FEMS Microbiol Lett 42:121–124

    Article  CAS  Google Scholar 

  28. Horswill A, Escalante-Semerena J (1997) Propionate catabolism in Salmonella typhimurium LT2: two divergently transcribed units comprise the prp locus at 8.5 centisomes, prpR encodes a member of the sigma-54 family of activators, and the prpBCDE genes constitute an operon. J Bacteriol 179:928–940

    PubMed  CAS  Google Scholar 

  29. Huennekens FM, Vitols KS, Fujii K, Jacobsen DW (1982) Biosynthesis of the cobalamin coenzymes. In: Dolphin D (ed) B12, vol 1. Wiley, New York, pp 145–164

    Google Scholar 

  30. Jeter RM (1990) Cobalamin-dependent 1,2-propanediol utilization by Salmonella typhimurium. J Gen Microbiol 136:887–896

    PubMed  CAS  Google Scholar 

  31. Jeter RM, Olivera BM, Roth JR (1984) Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J Bacteriol 159:206–213

    PubMed  CAS  Google Scholar 

  32. Johnson CLVJ, Pechonick E, Park SD, Havemann GD, Leal NA, Bobik TA (2001) Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene. J Bacteriol 183:1577–1584

    Article  PubMed  CAS  Google Scholar 

  33. Johnson CL, Buszko ML, Bobik TA (2004) Purification and initial characterization of the Salmonella enterica PduO ATP:Cob(I)alamin adenosyltransferase. J Bacteriol 186:7881–7887

    Article  PubMed  CAS  Google Scholar 

  34. Kaplan A (1990) Analysis of high CO2 requiring mutants indicates a central role for the 5′ flanking region of Rbc and for the carboxysomes in cyanobacterial photosynthesis. Can J Bot 68:1303–1310

    CAS  Google Scholar 

  35. Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–570

    Article  PubMed  CAS  Google Scholar 

  36. Kaplan A, Helman Y, Tchernov D, Reinhold L (2001) Acclimation of photosynthetic microorganisms to changing ambient CO2 concentration. Proc Natl Acad Sci U S A 98:4817–4818

    Article  PubMed  CAS  Google Scholar 

  37. Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309:936–938

    Article  PubMed  CAS  Google Scholar 

  38. Kofoid E, Rappleye C, Stojiljkovic I, Roth J (1999) The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol 181:5317–5329

    PubMed  CAS  Google Scholar 

  39. Leal NA, Havemann GD, Bobik TA (2003) PduP is a coenzyme-A-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. Arch Microbiol 180:353–361

    Article  PubMed  CAS  Google Scholar 

  40. Marcus Y, Schwarz R, Friedberg D, Kaplan A (1986) High CO2 requiring mutant of Anacystis nidulans R2. Plant Physiol 82:610–612

    CAS  Article  Google Scholar 

  41. Marcus Y, Berry JA, Pierce J (1992) Photosynthesis and photorespiration in a mutant of the cyanobacterium Synechocystis PCC-6803 lacking carboxysomes. Planta 187:511–516

    Article  CAS  Google Scholar 

  42. McKay R, Michael L, Gibbs SP, Espie GS (1993) Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of Rubisco and the mode of inorganic carbon transport in cells of the cyanobacterium Synechococcus UTEX 625. Arch Microbiol 159:21–29

    Article  CAS  Google Scholar 

  43. Mori K, Bando R, Hieda N, Toraya T (2004) Identification of a reactivating factor for adenosylcobalamin-dependent ethanolamine ammonia lyase. J Bacteriol 186:6845–6854

    Article  PubMed  CAS  Google Scholar 

  44. Obradors N, Badia J, Baldoma L, Aguilar J (1988) Anaerobic metabolism of the l-rhamnose fermentation product 1,2-propanediol in Salmonella typhimurium. J Bacteriol 170:2159–2162

    PubMed  CAS  Google Scholar 

  45. Orus MI, Rodriguez ML, Martinez F, Marco E (1995) Biogenesis and ultrastructure of carboxysomes from wild type and mutants of Synechococcus sp. strain PCC 7942. Plant Physiol 107:1159–1166

    CAS  Google Scholar 

  46. Palacios S, Starai VJ, Escalante-Semerena JC (2003) Propionyl coenzyme A is a common intermediate in the 1,2-propanediol and propionate catabolic pathways needed for expression of the prpBCDE operon during growth of Salmonella enterica on 1,2-propanediol. J Bacteriol 185:2802–2810

    Article  PubMed  CAS  Google Scholar 

  47. Pierce J, Carlson TJ, Williams JG (1989) A cyanobacterial mutant requiring the expression of ribulose bisphosphate carboxylase from a photosynthetic anaerobe. Proc Natl Acad Sci U S A 86:5753–5757

    PubMed  Article  CAS  Google Scholar 

  48. Price GD, Badger MR (1989a) Expression of human carbonic-anhydrase in the cyanobacterium Synechococcus Pcc7942 creates a high CO2-requiring phenotype-evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol 91:505–513

    CAS  Google Scholar 

  49. Price GD, Badger MR (1989b) Isolation and characterization of high CO2-requiring-mutants of the cyanobacterium Synechococcus PCC7942. Plant Physiol 91:514–525

    CAS  Google Scholar 

  50. Price GD, Coleman JR, Badger MR (1992) Association of carbonic-anhydrase activity with carboxysomes isolated from the cyanobacterium Synechococcus PCC7942. Plant Physiol 100:784–793

    CAS  Google Scholar 

  51. Price GD, Sultemeyer D, Klughammer B, Ludwig M, Badger MR (1998) The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins, and recent advances. Can J Bot 76:973–1002

    Article  CAS  Google Scholar 

  52. Rondon MR, Escalante-Semerena JC (1992) The poc locus is required for 1,2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella typhimurium. J Bacteriol 174:2267–2272

    PubMed  CAS  Google Scholar 

  53. Roof DM, Roth JR (1988) Ethanolamine utilization in Salmonella typhimurium. J Bacteriol 170:3855–3863

    PubMed  CAS  Google Scholar 

  54. Sampson EM, Johnson CL, Bobik TA (2005) Biochemical evidence that the pduS gene encodes a bifunctional cobalamin reductase. Microbiology 151:1169–1177

    Article  PubMed  CAS  Google Scholar 

  55. Satoh R, Himeno M, Wadano A (1997) Carboxysomal diffusion resistance to ribulose 1,5-bisphosphate and 3-phosphoglycerate in the cyanobacterium Synechococcus PCC7942. Plant Cell Physiol 38:769–775

    CAS  Google Scholar 

  56. Sheppard DE, Penrod JT, Bobik T, Kofoid E, Roth JR (2004) Evidence that a B12-adenosyl transferase is encoded within the ethanolamine operon of Salmonella enterica. J Bacteriol 186:4644–7635

    Article  CAS  Google Scholar 

  57. Shively J, Decker G, Greenawalt J (1970) Comparative ultrastructure of the thiobacilli. J Bacteriol 101:618–627

    PubMed  CAS  Google Scholar 

  58. Shively JM, Ball F, Brown DH, Saunders RE (1973) Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182:584–586

    PubMed  Article  CAS  Google Scholar 

  59. Shively JM, Bradburne CE, Aldrich HC, Bobik TA, Mehiman JL, Jin S, Baker SH (1998a) Sequence homologs of the carboxysomal polypeptide CsoS1 of the thiobacilli are present in cyanobacteria and enteric bacteria that form carboxysomes-polyhedral bodies. Can J Bot 76:906–916

    Article  CAS  Google Scholar 

  60. Shively JM, van Keulen G, Meijer WG (1998b) Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol 52:191–230

    Article  PubMed  CAS  Google Scholar 

  61. So AK, John-McKay M, Espie GS (2002) Characterization of a mutant lacking carboxysomal carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Planta 214:456–467

    Article  PubMed  CAS  Google Scholar 

  62. So AK, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J Bacteriol 186:623–630

    Article  PubMed  CAS  Google Scholar 

  63. Stojiljkovic I, Baumler AJ, Heffron F (1995) Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol 177:1357–1366

    PubMed  CAS  Google Scholar 

  64. Tobimatsu T, Kawata M, Toraya T (2005) The N-terminal regions of b and g subunits lower the solubility of adenosylcobalamin-dependent diol dehydratase. Biosci Biotechnol Biochem 69:455–462

    Article  PubMed  CAS  Google Scholar 

  65. Toraya T, Honda S, Fukui S (1979) Fermentation of 1,2-propanediol and 1,2-ethanediol by some genera of Enterobacteriaceae, involving coenzyme B12-dependent diol dehydratase. J Bacteriol 139:39–47

    PubMed  CAS  Google Scholar 

  66. Vitols E, Walker GA, Huennekens RM (1965) Enzymatic conversion of vitamin B12s to a cobamide coenzyme, a-(5,6-dimethylbenzimidazolyl)deoxyadenosylcobamide (adenosyl-B12). J Biol Chem 241:1455–1461

    Google Scholar 

  67. Yu JW, Price GD, Song L, Badger MR (1992) Isolation of a putative carboxysomal carbonic-anhydrase gene from the cyanobacterium Synechococcus Pcc7942. Plant Physiol 100:794–800

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Bobik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bobik, T.A. Polyhedral organelles compartmenting bacterial metabolic processes. Appl Microbiol Biotechnol 70, 517–525 (2006). https://doi.org/10.1007/s00253-005-0295-0

Download citation

Keywords

  • Carbonic Anhydrase
  • Shell Protein
  • Synechococcus Elongatus
  • Positive Electrostatic Potential
  • Distinct Organelle