Skip to main content
Log in

Production, properties and application to biocatalysis of a novel extracellular alkaline phenol oxidase from the thermophilic fungus Scytalidium thermophilum

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Scytalidium thermophilum produces an extracellular phenol oxidase on glucose-containing medium. Certain phenolic acids, specifically gallic acid and tannic acid, induce the expression of the enzyme. Production at 45°C in batch cultures is growth-associated and is enhanced in the presence of 160 μM CuSO4.5 H2O and 3 mM gallic acid. The highest enzyme activity is observed at pH 7.5 and 65°C, on catechol. When incubated for 1 h at pH 7 and pH 8, 95% and 86% of the activity is retained. Thermostability decreases gradually from 40°C to 80°C. Estimated molecular mass is c. 83 kDa, and pI is acidic at c. 5.4. Substrate specificity and inhibition analysis in culture supernatants suggest that the enzyme has unique properties showing activity towards catechol; 3,4-dihydroxy-l-phenylalanine (l-DOPA); 4-amino-N, N-diethylaniline (ADA); p-hydroquinone; gallic acid; tannic acid and caffeic acid, and no activity towards l-tyrosine, guaiacol, 2,2′-azino-bis(3-ethyl-benzthiazoline-6-sulphonic acid) (ABTS) and syringaldazine. Inhibition is observed in the presence of salicyl hydroxamic acid (SHAM) and p-coumaric acid. Enzyme activity is enhanced by cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP), and the organic solvents dimethyl sulfoxide (DMSO) and ethanol. No inhibition is observed in the presence of carbon monoxide. Benzoin, benzoyl benzoin and hydrobenzoin are converted into benzil, and stereoselective oxidation is observed on hydrobenzoin. The reported enzyme is novel due to its catalytic properties resembling mainly catechol oxidases, but displaying some features of laccases at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arifoğlu N, Ögel ZB (2000) Avicel-adsorbable endoglucanase production by the thermophilic fungus Scytalidium thermophilum type culture Torula thermophila. Enzyme Microb Technol 27:560–569

    Article  Google Scholar 

  • Berka RM, Thompson SA, Xu F (1998) Purified Scytalidium laccases and nucleic acids encoding same. Int. Patent Applic. PCT/U595/06816. 5,750,388

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  • Bollag JM, Leonowicz A (1984) Comparative studies of extracellular fungal phenol oxidase. Appl Environ Microbiol 48:849–854

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Burton SG (2003) Laccases and phenol oxidases in organic synthesis—a review. Curr Org Chem 7:1317–1331

    Article  CAS  Google Scholar 

  • Chefetz B, Chen Y, Hadar Y (1998) Purification and characterization of phenol oxidase from Chaetomium thermophilum and its role in humification. Appl Environ Microbiol 64(9):3175–3179

    Article  CAS  Google Scholar 

  • Cooney DG, Emerson R (1964) Thermophilic fungi: an account of their biology, activities and classification. W. H. Freeman, San Francisco

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Envrion 28:83–99

    Article  CAS  Google Scholar 

  • Eicken C, Krebs B, Sacchettini JC (1999) Catechol oxidase-structure and activity. Curr Opin Struck Biol 9:677–683

    Article  CAS  Google Scholar 

  • Gerdemann C, Eicken C, Krebs B (2002) The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins. Acc Chem Res 35:183–191

    Article  CAS  Google Scholar 

  • Gouka RJ, van der Heiden M, Swarthoff T, Verrips CT (2001) Cloning of a phenol oxidase gene from Acremonium murorum and its expression in Aspergillus awamori. Appl Environ Microbiol 67(6):2610–2616

    Article  CAS  Google Scholar 

  • Griffith GW (1994) Phenol oxidases. In: Martinelli SD and Kinghorn JR (eds) Aspergillus nidulans: 50 years on. progress in industrial microbiology 29, Elsevier, Amsterdam, pp 763–788

    Google Scholar 

  • Hatomoto O, Skine H, Nakano E, Abe K (1999) Cloning and expression of a cDNA encoding the laccase from Schizophyllum commune. Biosci Biotechnol Biochem 63(1):58–64

    Article  Google Scholar 

  • Hwang L, Hocking-Murray D, Bahrami AK, Andersson M, Rine J, Sil A (2003) Identifying phase-specific genes in the fungal pathogen Histoplasma capsulatum using a genomic shotgun microarray. Mol Biol Cell 14:2314–2326

    Article  CAS  Google Scholar 

  • Ishigami T, Yamada Y (1988) Characterization of polyphenol oxidase from Chaetomium thermophile, a thermophilic fungus. J Gen Appl Microbiol 34:401–407

    Article  CAS  Google Scholar 

  • Jaenicke E, Decker H (2004) Functional changes in the family of type 3 copper proteins during evolution. ChemBioChem 5:163–169

    Article  CAS  Google Scholar 

  • Jönsson LJ, Palmquist E, Nilvebrant NO, Hahn-Hagerdäl B (1998) Detoxification of wood hydrolystaes with phenol oxidase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49(6):691–697

    Article  Google Scholar 

  • Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158

    Article  CAS  Google Scholar 

  • Lim J-Y, Ishiguro K, Kubo I (1999) Tyrosinase inhibitory p-coumaric acid from ginseng leaves. Phytother Res 13:371–375

    Article  CAS  Google Scholar 

  • Lyons GA, McKay GJ, Sharma HSS (2000) Molecular comparison of Scytalidium thermophilum isolates using RAPD and ITS nucleotide sequence analyses. Mycol Res 104(12):1431–1438

    Article  CAS  Google Scholar 

  • Machuca A, Aoyama H, Durán N (1998) Production and characterization of thermostable peholoxidase of the ascomycete Thermoascus aurantiacus. Biotechnol Appl Biochem 27:217–223

    CAS  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000). Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  Google Scholar 

  • Mayer MA, Staples RC (2002) Phenol oxidase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  CAS  Google Scholar 

  • Minussi RC, Pastore GM, Durán N (2002) Potential applications of phenol oxidase in the food industry. Trends Food Sci Technol 13: 205–216

    Article  CAS  Google Scholar 

  • Record E, Punt PJ, Chamkha M, Labat M, van den Hondel CAMJJ, Asther M (2002) Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem 269:602–609

    Article  CAS  Google Scholar 

  • Rescigno A, Sanjust E, Montanari L, Sollai F, Soddu G, Rinaldi AC, Oliva S, Rinaldi A (1997) Detection of phenol oxidase, peroxidase and polyphenol oxidase on a single polyacrylamide gel electrophoresis. Anal Lett 30:2211–2220

    Article  CAS  Google Scholar 

  • Rescigno A, Sollai F, Pisu B, Rinaldi A, Sanjust E (2002) Tyrosinase inhibition: general and applied aspects. J Enzyme Inhib Med Chem 17(4):207–218

    Article  CAS  Google Scholar 

  • Sanchez-Amat A, Solano F (1997) A pluripotent polyphenol oxidase from the melanogenic marine Alteremonas sp. shares catalytic capabilities of tyrosinases and laccases. Biochem Biophys Res Commun 240:787–792

    Article  CAS  Google Scholar 

  • Sanchez-Amat A, Lucas-Elio P, Fernandez E, Garcia-Borron JC, Solano F (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta 1547:104–116

    Article  CAS  Google Scholar 

  • Score JA, Palfreyman JW, White NA (1997) Extracellular phenol oxidase and peroxidase enzyme production during interspecific fungal interactions. Int J Biodet Biodeg 39:225–233

    Article  CAS  Google Scholar 

  • Straatsma G, Samson RA (1993) Taxonomy of Scytalidium thermophilum, an important thermophilic fungus in mushroom compost. Mycol Res 97:321–328

    Article  Google Scholar 

  • Straatsma G, Samson RA, Olijnsma TW, Op Den Camp HJM, Gerritz JPG, van Griensven LJLD (1994) Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl Environ Microbiol 60:454–458

    Article  CAS  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    Article  CAS  Google Scholar 

  • Valiente C, Arrigoni E, Esteban RM, Amadò R (1995) Grape pomace as a potential food fýber. J Food Sci 60:818–820

    Article  CAS  Google Scholar 

  • van Gelder CWG, Flurkey WH, Wichers HJ (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45(7):1309–1323

    Article  Google Scholar 

  • van Griensven LJLD (1988) The cultivation of mushrooms. Darligton Mushroom Laboratories Ltd, UK and Somycel SA, France

  • Waite JH (1976) Calculating extinction coefficients for enzymatically produced o-quinones. Anal Biochem 75:211–218

    Article  CAS  Google Scholar 

  • Walker JRL, McCallion RF (1980) The selective inhibition of ortho- and para-diphenol oxidases. Phytochemistry 19(3):373–377

    Article  CAS  Google Scholar 

  • Yamada K, Chen TH, Kumar G, Vesnovsky O, Topoleski LDT, Payne GF (2000) Chitosan based water-resistant adhesive. analogy to mussel glue. Biomacromolecules 1(2):252–258

    Article  CAS  Google Scholar 

  • Yaropolov AI, Skorobogat’ko OV, Vartanov SS, Varfolomeyev SD (1994) Phenol oxidase: properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol 49:257–280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These studies were supported by grants from the Middle East Technical University and The State Planning Agency (DPT-08-11-DPT-2004 K120730). We would like to thank Çiğdem İğdir for help in HPLC and GC analyses. Also many thanks to Ögel’s and Bakir’s Lab. members for inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. B. Ögel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ögel, Z.B., Yüzügüllü, Y., Mete, S. et al. Production, properties and application to biocatalysis of a novel extracellular alkaline phenol oxidase from the thermophilic fungus Scytalidium thermophilum . Appl Microbiol Biotechnol 71, 853–862 (2006). https://doi.org/10.1007/s00253-005-0216-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0216-2

Keywords

Navigation