Skip to main content

Advertisement

Log in

Aptamers—basic research, drug development, and clinical applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Since its discovery in the early 1990s, aptamer technology has progressed tremendously. Automated selection procedures now allow rapid identification of DNA and RNA sequences that can target a broad range of extra- and intracellular proteins with nanomolar affinities and high specificities. The unique binding properties of nucleic acids, which are amenable to various modifications, make aptamers perfectly suitable for different areas of biotechnology. Moreover, the approval of an aptamer for vascular endothelial growth factor by the US Food and Drug Administration highlights the potential of aptamers for therapeutic applications. This review summarizes recent developments and demonstrates that aptamers are valuable tools for diagnostics, purification processes, target validation, drug discovery, and even therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antisoma (2005) Promising phase I data for Antisoma’s AS1411 revealed at ASCO

  • http://www.archemix.com/press/pr_jun04.html Archemix announce submission on an IND for thrombin inhibitor ARC183

  • Baldrich E, Restrepo A, O’Sullivan CK (2004) Aptasensor development: elucidation of critical parameters for optimal aptamer performance. Anal Chem 76:7053–7063

    CAS  PubMed  Google Scholar 

  • Blank M, Weinschenk T, Priemer M, Schluesener H (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. Selective targeting of endothelial regulatory protein pigpen. J Biol Chem 276:16464–16468

    CAS  PubMed  Google Scholar 

  • Blind M, Kolanus W, Famulok M (1999) Cytoplasmic RNA modulators of an inside-out signal-transduction cascade. Proc Natl Acad Sci U S A 96:3606–3610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blind M, Grättinger M, Mayer G (2002) Nucleic acid biotools: accelerating the discovery of lead compounds. Screening 6:35–37

    Google Scholar 

  • Bock C, Coleman M, Collins B, Davis J, Foulds G, Gold L, Greef C, Heil J, Heilig JS, Hicke B, Hurst MN, Husar GM, Miller D, Ostroff R, Petach H, Schneider D, Vant-Hull B, Waugh S, Weiss A, Wilcox SK, Zichi D (2004) Photoaptamer arrays applied to multiplexed proteomic analysis. Proteomics 4:609–618

    CAS  PubMed  Google Scholar 

  • Brody EN, Willis MC, Smith JD, Jayasena S, Zichi D, Gold L (1999) The use of aptamers in large arrays for molecular diagnostics. Mol Diagn 4:381–388

    CAS  PubMed  Google Scholar 

  • Burgstaller P, Girod A, Blind M (2002) Aptamers as tools for target prioritization and lead identification. Drug Discov Today 7:1221–1228

    CAS  PubMed  Google Scholar 

  • Burmeister PE, Lewis SD, Silva RF, Preiss JR, Horwitz LR, Pendergrast PS, McCauley TG, Kurz JC, Epstein DM, Wilson C, Keefe AD (2005) Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol 12:25–33

    CAS  PubMed  Google Scholar 

  • Chen CH, Chernis GA, Hoang VQ, Landgraf R (2003) Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc Natl Acad Sci U S A 100:9226–9231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad R, Ellington AD (1996) Detecting immobilized protein kinase C isozymes with RNA aptamers. Anal Biochem 242:261–265

    CAS  PubMed  Google Scholar 

  • Cox JC, Ellington AD (2001) Automated selection of anti-protein aptamers. Bioorg Med Chem 9:2525–2531

    CAS  PubMed  Google Scholar 

  • Davis KA (1998) Staining of cell surface CD4 with 2′-F-pyrimidin-containing RNA aptamers for flow cytometry. Nucleic Acids Res 26:3915–3924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drolet DW, Moon-McDermott L, Romig TS (1996) An enzyme-linked oligonucleotide assay. Nat Biotechnol 14:1021–1025

    CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    CAS  PubMed  Google Scholar 

  • Eulberg D, Buchner K, Maasch C, Klussmann S (2005) Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res 33:e45

    PubMed  PubMed Central  Google Scholar 

  • Eyetech Study Group (2002) Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age related macular degeneration. Retina 22:143–152

    Google Scholar 

  • Eyetech Study Group (2003) Antivascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age related macular degeneration: phase II study results. Ophthalmology 110:979–986

    Google Scholar 

  • Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672

    CAS  PubMed  Google Scholar 

  • FDA (2004) http://www.fda.gov/bbs/topics/news/2004/new01146.html

  • Floege J, Ostendorf T, Janssen U, Burg M, Radeke HH, Vargeese C, Gill SC, Green LS, Janjic N (1999) Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am J Pathol 154:169–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fredrikson S (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477

    Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    CAS  PubMed  Google Scholar 

  • Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M (1996) RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 24:1029–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Diversity of oligonucleotide functions. Annu Rev Biochem 64:763–797

    CAS  PubMed  Google Scholar 

  • Green LS, Bell C, Janjic N (2001) Aptamers as reagents for high-throughput screening. BioTechniques 30:1094–1110

    CAS  PubMed  Google Scholar 

  • Hamaguchi N, Ellington A, Stanton M (2001) Aptamer beacons for the direct detection of proteins. Anal Biochem 294:126–131

    CAS  PubMed  Google Scholar 

  • Han M (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19: 631–635

    CAS  PubMed  Google Scholar 

  • Harris S, Foord SM (2000) Transgenic knock-outs: functional genomics and therapeutic target selection. Pharmacogenomics 1:433–443

    CAS  PubMed  Google Scholar 

  • Heilig J (2004) Abstract book 2nd annual Nucleic Acid World Summit Boston

  • Heyduk E, Heyduk T (2005) Nucleic acid-based fluorescence sensors for detecting proteins. Anal Chem 77:1147–1156

    CAS  PubMed  Google Scholar 

  • Hicke BJ, Marion C, Chang F, Gould T, Lynott CK, Parma D, Schmidt PG, Warren S (2001) Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 276:48644–48654

    CAS  PubMed  Google Scholar 

  • Ikebukuro K, Kiyohara C, Sode K (2005) Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens Bioelectron 20:2168–2172

    CAS  PubMed  Google Scholar 

  • Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  PubMed  Google Scholar 

  • Kimoto M, Sakamoto K, Shirouzu M, Hirao I, Yokoyama S (1998) RNA aptamers that specifically bind to the Ras-binding domain of Raf-1. FEBS Lett 441:322–326

    CAS  PubMed  Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:496–497

    Google Scholar 

  • Kohn DB, Bauer G, Rice CR, Rothschild JC, Carbonaro DA, Valdez P, Hao Q, Zhou C, Bahner I, Kearns K, Brody K, Fox S, Haden E, Wilson K, Salata C, Dolan C, Wetter C, Aguilar-Cordova E, Church J (1999) A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34() cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 94:368–371

    CAS  PubMed  Google Scholar 

  • Konopka K, Lee NS, Rossi J, Duzgunes N (2000) Rev-binding aptamer and CMV promoter act as decoys to inhibit HIV replication. Gene 255:235–244

    CAS  PubMed  Google Scholar 

  • Liss M, Petersen B, Wolf H, Prohaska E (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74:4488–4495

    CAS  PubMed  Google Scholar 

  • Lorger M, Engstler M, Homann M, Göringer HU (2003) Targeting the variable surface of African trypanosomes with variant surface glycoproteins-specific serum stable RNA aptamers. Eukaryot Cell 2:84–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033

    CAS  PubMed  Google Scholar 

  • Mannironi C, Di Narbo A, Fruscoloni P, Tocchini-Valentini GP (1997) In vitro selection of dopamine RNA ligands. Biochemistry 36:9726–9734

    CAS  PubMed  Google Scholar 

  • Marro ML, Daniels DA, McNamee A, Andrew DP, Chapman TD, Jiang MS, Wu Z, Smith JL, Patel KK, Gearing KL (2005) Identification of potent and selective RNA antagonist of the IFN-γ-inducible CXCL10 chemokine. Biochemistry 44:8449–8460

    CAS  PubMed  Google Scholar 

  • Martell RE, Nevins JR, Sullenger BA (2002) Optimizing aptamer activity for gene therapy applications using expression cassette SELEX. Mol Ther 6:30–34

    CAS  PubMed  Google Scholar 

  • Mayer G, Blind M, Nagel W, Bohm T, Knorr T, Jackson CL, Kolanus W, Famulok M (2001) Controlling small guanine-nucleotide-exchange factor function through cytoplasmic RNA intramers. Proc Natl Acad Sci U S A 98:4961–4965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MB, Fuller ST, Richardson PM, Doyle SA (2003) An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res 31(18):e110

    PubMed  PubMed Central  Google Scholar 

  • Nickens DG, Patterson JT, Burke DH (2003) Inhibition of HIV-1 reverse transcriptase by RNA aptamers in Escherichia coli. RNA 9:1029–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nieuwlandt D, Wecker M, Gold L (1995) In vitro selection of RNA ligands to substance P. Biochemistry 24:5651–5659

    Google Scholar 

  • Nimjee SM, Rusconi CP, Harrington RA, Sullenger BA (2005a) The potential of aptamers as anticoagulants. Trends Cardiovasc Med 15:41–45

    CAS  PubMed  Google Scholar 

  • Nimjee SM, Rusconi CP, Sullenger BA (2005b) Aptamers: an emerging class of therapeutics. Annu Rev Med 56:555–583

    CAS  PubMed  Google Scholar 

  • Nutiu R, Li Y (2004) Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. Chemistry 10:1868–1876

    CAS  PubMed  Google Scholar 

  • Opalinska JB, Gewirtz AM (2002) Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 1:503–514

    CAS  PubMed  Google Scholar 

  • Petach H, Gold L (2002) Dimensionality is the issue: use of photoaptamers in protein microarrays. Curr Opin Biotechnol 13:309–314

    CAS  PubMed  Google Scholar 

  • Proske D, Höfliger M, Soll RM, Beck-Sickinger AG, Famulok M (2002) A Y2 receptor mimetic aptamer directed against neuropeptide Y. J Biol Chem 277:11416–11422

    CAS  PubMed  Google Scholar 

  • Rinquist S, Parma D (1998) Anti-L-selectin oligonucleotide ligands recognize CD62L-positive leucocytes: binding affinity and specificity of univalent and bivalent ligands. Cytometry 33:394–405

    Google Scholar 

  • Romig TS, Bell C, Drolet DW (1999) Aptamer affinity chromatography: combinatorial chemistry applied to protein purification. J Chromatogr B Biomed Sci Appl 731:275–284

    CAS  PubMed  Google Scholar 

  • Rossi JJ (1999) Ribozymes, genomics and therapeutics. Chem Biol 6:R33–R37

    CAS  PubMed  Google Scholar 

  • Rusconi CP, Yeh A, Lyerly HK, Lawson JH, Sullenger BA (2000) Blocking the initiation of coagulation by RNA aptamers to factor VIIa. Thromb Haemost 84:841–848

    CAS  PubMed  Google Scholar 

  • Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL, Monroe D, Sullenger BA (2002) RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419:90–94

    CAS  PubMed  Google Scholar 

  • Rusconi CP, Roberts JD, Pitoc GA, Nimjee SM, White RR, Quick G Jr, Scardino E, Fay WP, Sullenger BA (2004) Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotechnol 22:1373–1384

    Google Scholar 

  • Seiwert SD, Stines Nahreini T, Aigner S, Ahn NG, Uhlenbeck OC (2000) RNA aptamers as pathway-specific MAP kinase inhibitors. Chem Biol 7:833–843

    CAS  PubMed  Google Scholar 

  • Shi H, Hoffman BE, Lis JT (1999) RNA aptamers as effective protein antagonists in a multicellular organism. Proc Natl Acad Sci U S A 96(18):10033–10038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD (2002) Applications of antisense and siRNAs during preclinical development. Drug Discov Today 7:912–917

    CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510

    CAS  PubMed  Google Scholar 

  • Tuschl T (2002) Expanding small RNA interference. Nat Biotechnol 20:446–448

    CAS  PubMed  Google Scholar 

  • Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191–3197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vicens MC, Sen A, Vanderlaan A, Drake TJ, Tan W (2005) Investigation of molecular beacon aptamer-based bioassay for platelet-derived growth factor detection. Chembiochem 6:900–907

    CAS  PubMed  Google Scholar 

  • Yamamoto R, Baba T, Kumar PK (2000a) Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes Cells 5:389–396

    CAS  PubMed  Google Scholar 

  • Yamamoto R, Katahira M, Nishikawa S, Baba T, Taira K, Kumar PK (2000b) A novel RNA motif that binds efficiently and specifically to the Tat protein of HIV and inhibits the trans-activation by Tat of transcription in vitro and in vivo. Genes Cells 5(5):371–388

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Dr. Andreas Jenne and Dr. Michael Blind for providing valuable comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Proske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proske, D., Blank, M., Buhmann, R. et al. Aptamers—basic research, drug development, and clinical applications. Appl Microbiol Biotechnol 69, 367–374 (2005). https://doi.org/10.1007/s00253-005-0193-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0193-5

Keywords

Navigation