Recombinant microbial systems for the production of human collagen and gelatin

Abstract

The use of genetically engineered microorganisms is a cost-effective, scalable technology for the production of recombinant human collagen (rhC) and recombinant gelatin (rG). This review will discuss the use of yeast (Pichia pastoris, Saccharomyces cerevisiae, Hansenula polymorpha) and of bacteria (Escherichia coli, Bacillus brevis) genetically engineered for the production of rhC and rG. P. pastoris is the preferred production system for rhC and rG. Recombinant strains of P. pastoris accumulate properly hydroxylated triple helical rhC intracellularly at levels up to 1.5 g/l. Coexpression of recombinant collagen with recombinant prolyl hydroxylase results in the synthesis of hydroxylated collagen with thermal stability similar to native collagens. The purified hydroxylated rhC forms fibrils that are structurally similar to fibrils assembled from native collagen. These qualities make rhC attractive for use in many medical applications. P. pastoris can also be engineered to secrete high levels (3 to 14 g/l ) of collagen fragments with defined length, composition, and physiochemical properties that serve as substitutes for animal-derived gelatins. The replacement of animal-derived collagen and gelatin with rhC and rG will result in products with improved safety, traceability, reproducibility, and quality. In addition, the rhC and rG can be engineered to improve the performance of products containing these biomaterials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Ala-Kokko L, Hyland J, Smith C, Kivirikko KI, Jimenez SA, Prockop DJ (1991) Expression of a human cartilage procollagen gene (COL2A1) in mouse 3T3 cells. J Biol Chem 266:14175−14178

    CAS  PubMed  Google Scholar 

  2. Annunen P, Helaakoski T, Myllyharju J, Veijola J, Pihlajaniemi T, Kivirikko KI (1997) Cloning of the human prolyl 4-hydroxylase alpha subunit isoform alpha(II) and characterization of the type II enzyme tetramer. The alpha(I) and alpha(II) subunits do not form a mixed alpha(I)alpha(II)beta2 tetramer. J Biol Chem 272:17342−17348

    CAS  PubMed  Google Scholar 

  3. Asghar A, Henrickson RL (1982) Chemical, biochemical, functional, and nutritional characteristics of collagen in food systems. Adv Food Res 28:231−372

    CAS  PubMed  Google Scholar 

  4. Bateman JF, Lamande SR, Ramshaw JAM (1996) Collagen superfamily. In: Comper WD (ed) Extracellular matrix, 2nd edn. Harwood Academic, Amsterdam pp 22−67

    Google Scholar 

  5. Bodo B, Chang R, Hamalainen E, Leigh S, McMullin H, Olsen D, Revak T, Yang C, Polarek J (2004) Production of triple-helical recombinant human collagen in P. pastoris. Annual meeting industrial microbiology and biotechnology, Anaheim, CA, USA

  6. Buechter DD, Paolella DN, Leslie BS, Brown MS, Mehos KA, Gruskin EA (2003) Co-translational incorporation of trans-4-hydroxyproline into recombinant proteins in bacteria. J Biol Chem 278:645−650

    CAS  PubMed  Google Scholar 

  7. Bulleid NJ, John DC, Kadler KE (2000) Recombinant expression systems for the production of collagen. Biochem Soc Trans 28:350−353

    CAS  PubMed  Google Scholar 

  8. Cappello J (1990) The biological production of protein polymers and their use. Trends Biotechnol 8:309−311

    CAS  PubMed  Google Scholar 

  9. Cappello J, Crissman J, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari F (1990) Genetic engineering of structural protein polymers. Biotechnol Prog 6:198−202

    CAS  PubMed  Google Scholar 

  10. Celerin M, Ray J, Schisler N, Day A, Stetler-Stevenson W, Laudenbach D (1996) Fungal fimbriae are composed of collagen. EMBO J 15:4445−4453

    CAS  PubMed  PubMed Central  Google Scholar 

  11. de Bruin EC, de Wolf FA, Laane NC (2000) Expression and secretion of human alpha1(I) procollagen fragment by Hansenula polymorpha as compared to Pichia pastoris. Enzyme Microb Technol 26:640−644

    PubMed  Google Scholar 

  12. de Bruin EC, Werten MW, Laane C, de Wolf FA (2002) Endogenous prolyl 4-hydroxylation in Hansenula polymorpha and its use for the production of hydroxylated recombinant gelatin. FEMS Yeast Res 1:291−298

    PubMed  Google Scholar 

  13. Digenis GA, Gold TB, Shah VP (1994) Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance. J Pharm Sci 83:915−921

    CAS  PubMed  Google Scholar 

  14. Dormont D (2002) Prions, BSE and food. Int J Food Microbiol 78:181−189

    CAS  PubMed  Google Scholar 

  15. Eyre D (1987) Collagen cross-linking amino acids. Methods Enzymol 144:115−139

    CAS  PubMed  Google Scholar 

  16. Goldberg I, Salerno AJ, Patterson T, Williams JI (1989) Cloning and expression of a collagen-analog-encoding synthetic gene in Escherichia coli. Gene 80:305−314

    CAS  PubMed  Google Scholar 

  17. Hori H, Hattori S, Inouye S, Kimura A, Irie S, Miyazawa H, Sakaguchi M (2002) Analysis of the major epitope of the alpha2 chain of bovine type I collagen in children with bovine gelatin allergy. J Allergy Clin Immunol 110:652−657

    CAS  PubMed  Google Scholar 

  18. John DC, Watson R, Kind AJ, Scott AR, Kadler KE, Bulleid NJ (1999) Expression of an engineered form of recombinant procollagen in mouse milk. Nat Biotechnol 17:385−389

    CAS  PubMed  Google Scholar 

  19. Kajino T, Takahashi H, Hirai M, Yamada Y (2000) Efficient production of artificially designed gelatins with a Bacillus brevis system. Appl Environ Microbiol 66:304−309

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaneko K (2002) Potential risk of bovine spongiform encephalopathy (BSE) to human beings and therapeutic approaches to prion disease. Shokuhin Eiseigaku Zasshi 43:J221−J227

    PubMed  Google Scholar 

  21. Keizer-Gunnink I, Vuorela A, Myllyharju J, Pihlajaniemi T, Kivirikko KI, Veenhuis M (2000) Accumulation of properly folded human type III procollagen molecules in specific intracellular membranous compartments in the yeast Pichia pastoris. Matrix Biol 19:29−36

    CAS  PubMed  Google Scholar 

  22. Kersteen EA, Higgin JJ, Raines RT (2004) Production of human prolyl 4-hydroxylase in Escherichia coli. Protein Expr Purif 38:279−291

    CAS  PubMed  Google Scholar 

  23. Kivirikko KI (1995) Principles of medical biology. In: Bittar EE, Bittar N (eds) Posttranslational processing of collagens, 3rd edn. JAI Press, Greenwich pp 233−254

    Google Scholar 

  24. Kivirikko KI, Pihlajaniemi T (1998) Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases. Adv Enzymol Relat Areas Mol Biol 72:325−398

    CAS  PubMed  Google Scholar 

  25. Kivirikko KI, Myllyla R, Pihlajaniemi T (1992) Hydroxylation of proline and lysine residues in collagens and other animal and plant proteins. In: Harding JJ, Crabbe MJC (eds) Post-translational modifications of proteins. CRC Press, Inc., Boca Raton pp 1−51

    Google Scholar 

  26. Kukkola L, Koivunen P, Pakkanen O, Page AP, Myllyharju J (2004) Collagen prolyl 4-hydroxylase tetramers and dimers show identical decreases in Km values for peptide substrates with increasing chain length: mutation of one of the two catalytic sites in the tetramer inactivates the enzyme by more than half. J Biol Chem 279:18656−18661

    CAS  PubMed  Google Scholar 

  27. Lamberg A, Helaakoski T, Myllyharju J, Peltonen S, Notbohm H, Pihlajaniemi T, Kivirikko KI (1996) Characterization of human type III collagen expressed in a baculovirus system. Production of a protein with a stable triple helix requires coexpression with the two types of recombinant prolyl 4-hydroxylase subunit. J Biol Chem 271:11988−11995

    CAS  PubMed  Google Scholar 

  28. Merle C, Perret S, Lacour T, Jonval V, Hudaverdian S, Garrone R, Ruggiero F, Theisen M (2002) Hydroxylated human homotrimeric collagen I in Agrobacterium tumefaciens-mediated transient expression and in transgenic tobacco plant. FEBS Lett 515:114−118

    Google Scholar 

  29. Min W, Begley TP, Myllyharju J, Kivirikko KI (2000) Mechanistic studies on prolyl-4-hydroxylase: demonstration that the ferryl intermediate does not exchange with water. Bioorganic Chem 28:261−265

    CAS  Google Scholar 

  30. Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20:33−43

    CAS  PubMed  Google Scholar 

  31. Myllyharju J, Lamberg A, Notbohm H, Fietzek PP, Pihlajaniemi T, Kivirikko KI (1997) Expression of wild-type and modified proalpha chains of human type I procollagen in insect cells leads to the formation of stable [alpha1(I)2alpha2(I) collagen heterotrimers and [alpha1(I)3 homotrimers but not [alpha2(I)3 homotrimers. J Biol Chem 272:21824−21830

    CAS  PubMed  Google Scholar 

  32. Myllyharju J, Nokelainen M, Vuorela A, Kivirikko KI (2000) Expression of recombinant human type I−III collagens in the yeast Pichia pastoris. Biochem Soc Trans 28:353−357

    CAS  PubMed  Google Scholar 

  33. Nagata K, Hosokawa N (1996) Regulation and function of collagen-specific molecular chaperone, HSP47. Cell Struct Funct 21:425−430

    CAS  PubMed  Google Scholar 

  34. Neubauer A, Neubauer P, Myllyharju J (2005) High-level production of human collagen prolyl 4-hydroxylase in Escherichia coli. Matrix Biol 24:59−68

    CAS  PubMed  Google Scholar 

  35. Nokelainen M, Tu H, Vuorela A, Notbohm H, Kivirikko KI, Myllyharju J (2001) High-level production of human type I collagen in the yeast Pichia pastoris. Yeast 18:797−806

    CAS  PubMed  Google Scholar 

  36. Olsen D (2004) Recombinant human gelatin vaccine stabilizer: A substitute for animal-derived gelatin with superior features. The seventh annual conference on vaccine research. Arlington, VA, USA (abstract)

  37. Olsen AS, Geddis AE, Prockop DJ (1991) High levels of expression of a minigene version of the human pro alpha 1 (I) collagen gene in stably transfected mouse fibroblasts. Effects of deleting putative regulatory sequences in the first intron. J Biol Chem 266:1117−1121

    CAS  PubMed  Google Scholar 

  38. Olsen D, Chang R, Jiang J, Pirskanen A, Myllyharju J, Yang C, Bodo M, Jarvinen M, Nevalainen T, Hamalainen E-R, Perala-Heape M, Nokelainen M, Kivirikko KI, Polarek J (2000) Development of Recombinant Human Gelatins and Specific Molecular Type Human Gelatins. Cambridge Healthtech Institute's 2nd annual international transmissible spongiform encephalopathies (TSE Issues). Alexandria, VA (abstract)

  39. Olsen DR, Leigh SD, Chang R, McMullin H, Ong W, Tai E, Chisholm G, Birk DE, Berg RA, Hitzeman RA, Toman PD (2001) Production of human type I collagen in yeast reveals unexpected new insights into the molecular assembly of collagen trimers. J Biol Chem 276:24038−24043

    CAS  PubMed  Google Scholar 

  40. Olsen D, Chang R, Sakaguchi M, Leigh S, Lundgard R, Buschman F, Lonergan M, McMullin H, Luehrs C, Beardsley A, Revak T, Polarek J (2003a) Formulation strategies for biopharmaceuticals. Development of recombinant human gelatin for use as a stabilizer in biopharmaceuticals. Philadelphia, PA (abstract)

  41. Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J, Carmichael D, Perala M, Hamalainen ER, Jarvinen M, Polarek J (2003b) Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 55:1547−1567

    CAS  PubMed  Google Scholar 

  42. Olsen D, Chiang R, Williams KE, and Polarek JW, (2005a) The development of novel recombinant human gelatins as replacements for animal-derived gelatin in pharmacuetical applications In: Pasupuleti VK, and Sai International (eds) Protein Hydrolysates in Nutrition and Biotechnology, Kluwer Academic; Dordrecht, The Netherlands. Unpublished

  43. Olsen D, Jiang J, Chang R, Duffy R, Sakaguchi M, Leigh S, Lundgard R, Ju J, Buschman F, Truong-Le V, Pham B, Polarek JW (2005b) Expression and characterization of a low molecular weight recombinant human gelatin: development of a substitute for animal-derived gelatin with superior features. Protein Expr Purif 40:346−357

    CAS  PubMed  Google Scholar 

  44. Pakkanen O, Hamalainen ER, Kivirikko KI, Myllyharju J (2003) Assembly of stable human type I and III collagen molecules from hydroxylated recombinant chains in the yeast Pichia pastoris. Effect of an engineered C-terminal oligomerization domain foldon. J Biol Chem 278:32478−32483

    CAS  PubMed  Google Scholar 

  45. Pihlajamaa T, Perala M, Vuoristo MM, Nokelainen M, Bodo M, Schulthess T, Vuorio E, Timpl R, Engel J, Ala-Kokko L (1999) Characterization of recombinant human type IX collagen. Association of alpha chains into homotrimeric and heterotrimeric molecules. J Biol Chem 274:22464−22468

    CAS  PubMed  Google Scholar 

  46. Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403−434

    CAS  PubMed  Google Scholar 

  47. Ruggiero F, Exposito JY, Bournat P, Gruber V, Perret S, Comte J, Olagnier B, Garrone R, Theisen M (2000) Triple helix assembly and processing of human collagen produced in transgenic tobacco plants. FEBS Lett 469:132−136

    CAS  PubMed  Google Scholar 

  48. Saddler JM, Horsey PJ (1987) The new generation gelatins. A review of their history, manufacture and properties. Anaesthesia 42:998−1004

    CAS  PubMed  Google Scholar 

  49. Schnieke A, Dziadek M, Bateman J, Mascara T, Harbers K, Gelinas R, Jaenisch R (1987) Introduction of the human pro alpha 1(I) collagen gene into pro alpha 1(I)-deficient Mov-13 mouse cells leads to formation of functional mouse-human hybrid type I collagen. Proc Natl Acad Sci U S A 84:764−768

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schrieber R, Seybold U (1993) Gelatine production, the six steps to maximum safety. Dev Biol Stand 80:195−198

    CAS  PubMed  Google Scholar 

  51. Tandon M, Wu M, Begley TP, Myllyharju J, Pirskanen A, Kivirikko K (1998) Substrate specificity of human prolyl-4-hydroxylase. Bioorg Med Chem Lett 8:1139−1144

    CAS  PubMed  Google Scholar 

  52. Toman PD, Pieper F, Sakai N, Karatzas C, Platenburg E, de Wit I, Samuel C, Dekker A, Daniels GA, Berg RA, Platenburg GJ (1999) Production of recombinant human type I procollagen homotrimer in the mammary gland of transgenic mice. Transgenic Res 8:415−427

    CAS  PubMed  Google Scholar 

  53. Toman PD, Chisholm G, McMullin H, Giere LM, Olsen DR, Kovach RJ, Leigh SD, Fong BE, Chang R, Daniels GA, Berg RA, Hitzeman RA (2000) Production of recombinant human type I procollagen trimers using a four-gene expression system in the yeast Saccharomyces cerevisiae. J Biol Chem 275:23303−23309

    CAS  PubMed  Google Scholar 

  54. Tomita M, Ohkura N, Ito M, Kato T, Royce PM, Kitajima T (1995) Biosynthesis of recombinant human pro-alpha 1(III) chains in a baculovirus expression system: production of disulphide-bonded and non-disulphide-bonded species containing full-length triple helices. Biochem J 312(Pt 3):847−853

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tomita M, Kitajima T, Yoshizato K (1997) Formation of recombinant human procollagen I heterotrimers in a baculovirus expression system. J Biochem (Tokyo) 121:1061−1069

    CAS  Google Scholar 

  56. Tomita M, Yoshizato K, Nagata K, Kitajima T (1999) Enhancement of secretion of human procollagen I in mouse HSP47-expressing insect cells. J Biochem (Tokyo) 126:1118−1126

    CAS  Google Scholar 

  57. Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21:52−56

    CAS  PubMed  Google Scholar 

  58. Vaughn PR, Galanis M, Richards KM, Tebb TA, Ramshaw JA, Werkmeister JA (1998) Production of recombinant hydroxylated human type III collagen fragment in Saccharomyces cerevisiae. DNA Cell Biol 17:511−518

    CAS  PubMed  Google Scholar 

  59. Veijola J, Pihlajaniemi T, Kivirikko KI (1996) Co-expression of the alpha subunit of human prolyl 4-hydroxylase with BiP polypeptide in insect cells leads to the formation of soluble and insoluble complexes. Soluble alpha-subunit-BiP complexes have no prolyl 4-hydroxylase activity. Biochem J 315(Pt 2):613−618

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Vuorela A, Myllyharju J, Nissi R, Pihlajaniemi T, Kivirikko KI (1997) Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J 16:6702−6712

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Vuorela A, Myllyharju J, Pihlajaniemi T, Kivirikko KI (1999) Coexpression with collagen markedly increases the half-life of the recombinant human prolyl 4-hydroxylase tetramer in the yeast Pichia pastoris. Matrix Biol 18:519−522

    CAS  PubMed  Google Scholar 

  62. Werten MW, van den BTJ, Wind RD, Mooibroek H, de Wolf F (1999) High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast 15(15):1087−1096

    CAS  PubMed  Google Scholar 

  63. Werten MW, Wisselink WH, Jansen-van den Bosch TJ, de Bruin EC, de Wolf FA (2001) Secreted production of a custom-designed, highly hydrophilic gelatin in Pichia pastoris. Protein Eng 14:447−454

    CAS  PubMed  Google Scholar 

  64. Yamauchi M, Shiiba M (2002) Lysine hydroxylation and crosslinking of collagen. Methods Mol Biol 194:290

    Google Scholar 

  65. Yang C, Bodo M, Chang R, Perala-Heape M, Hamalainen E, Russell D, Polarek J (1999) Development of recombinant gelatin by expression of recombinant collagen in yeast and plants. AAPS annual meeting. New Orleans, LA (abstract)

  66. Yang C, Balan J, Tang J, Lee S, Bodo M, Ho F, Duffy R, Chin E, Perala-Heape M, Hamalainen, E-R, Polarek, J (2001) Biocompatibility of recombinant human collagen I produced with multigene expression system for biomaterial application. Society for biomaterials 27th annual meeting. Saint Paul, MN, USA (Abstract)

  67. Yang C, Hillas PJ, Baez JA, Nokelainen M, Balan J, Tang J, Spiro R, Polarek JW (2004) The application of recombinant human collagen in tissue engineering. BioDrugs 18:103−119

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to recognize the technical contribution to this work provided by Michael Bodo, Frank Buschman, Robert Chang, Robert Duffy, Jenny Jiang, Julia Ju, Scott Leigh, Robert Lundgard, Hugh McMullin, Timothy Revak, Kim Williams, and Chunlin Yang. The authors would also like to thank Elaine Lee for the preparation of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julio Báez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Báez, J., Olsen, D. & Polarek, J.W. Recombinant microbial systems for the production of human collagen and gelatin. Appl Microbiol Biotechnol 69, 245–252 (2005). https://doi.org/10.1007/s00253-005-0180-x

Download citation

Keywords

  • Gelatin
  • Hydroxyproline
  • Prolyl
  • Collagen Fragment
  • Transgenic Silkworm