Advertisement

Applied Microbiology and Biotechnology

, Volume 68, Issue 2, pp 220–227 | Cite as

Expression of SARS-coronavirus nucleocapsid protein in Escherichia coli and Lactococcus lactis for serodiagnosis and mucosal vaccination

  • Huadong Pei
  • Jingfang Liu
  • Yun Cheng
  • Chaomin Sun
  • Chen Wang
  • Yueping Lu
  • Jie Ding
  • Jian Zhou
  • Hua XiangEmail author
Applied Genetics and Molecular Biotechnology

Abstract

The nucleocapsid (N) protein of the severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) is an important antigen for the early diagnosis of SARS and the development of vaccines. It was expressed in Escherichia coli as a fusion with human glutathione S-transferase (hGST) and was confirmed by Western blotting analysis. This recombinant N protein (hGST-N) was purified and used to measure the SARS-CoV N-specific antibody in the sera of eight SARS patients by enzyme-linked immunosorbent assay. Specific antibody response to this purified recombinant N protein was 100% positive in the SARS patients’ sera, while none of the control sera from 30 healthy people gave a positive reaction in the same assay. The SARS-CoV N protein was also expressed in Lactococcus lactis in the cytoplasm or secreted into the medium. The N-producing strain MG1363/pSECN and the purified hGST-N protein were respectively administered to mice, either orally or intranasally. Results indicated that orally delivered MG1363/pSECN induced significant N-specific IgG in the sera. In conclusion, our work provides a novel strategy to produce the SARS-CoV N protein for serodiagnosis and for L. lactis-based mucosal vaccines.

Keywords

Severe Acute Respiratory Syndrome Severe Acute Respiratory Syndrome Vaccine Antigen Severe Acute Respiratory Syndrome Patient Mucosal Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Chinese Academy of Sciences. We thank Prof. Piard for his generous gift of plasmid pVE5523. H.P., J.L. and Y.C. contributed equally to this paper

References

  1. Dieye Y, Usai S, Clier F, Gruss A, Piard JC (2001) Design of a protein-targeting system for lactic acid bacteria. J Bacteriol 183:4147–4166Google Scholar
  2. Dieye Y, Hoekman AJ, Clier F, Juillard V, Boot HJ, Piard JC (2003) Ability of Lactococcus lactis to export viral capsid antigens: a crucial step for development of live vaccines. Appl Environ Microbiol 69:7281–7288Google Scholar
  3. Gao W, Tamin A, Soloff A, D’Aiuto L, Nwanegbo E, Robbins PD, Bellini WJ, Barratt-Boyes S, Gambotto A (2003) Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 362:1895–1896Google Scholar
  4. Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9Google Scholar
  5. Gilbert C, Robinson K, Le Page RW, Wells JM (2000) Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis. Infect Immun 68:3251–3260Google Scholar
  6. Kuipers OP, Ruyter PG de, Kleerebezem M, Vos WM de (1998) Quorum sensing—controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21Google Scholar
  7. Liu X, Shi Y, Li P, Li L, Yi Y, Ma Q, Cao C (2004) Profile of antibodies to the nucleocapsid protein of the severe acute respiratory syndrome (SARS)-associated coronavirus in probable SARS patients. Clin Diagn Lab Immunol 11:227–228Google Scholar
  8. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL (2003) The genome sequence of the SARS-associated coronavirus. Science 300:1399–1404Google Scholar
  9. Piard JC, Hautefort I, Fischetti VA, Ehrlich SD, Fons M, Gruss A (1997) Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J Bacteriol 179:3068–3072Google Scholar
  10. Robinson K, Chamberlain LM, Schofield KM, Wells JM, Le Page RW (1997) Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat Biotechnol 15:653–657Google Scholar
  11. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399Google Scholar
  12. Ruan YJ, Wei CL, Ee AL, Vega VB, Thoreau H, Su ST, Chia JM, Ng P, Chiu KP, Lim L, Zhang T, Peng CK, Lin EO, Lee NM, Yee SL, Ng LF, Chee RE, Stanton LW, Long PM, Liu ET (2003) Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet 361:1779–1785CrossRefPubMedGoogle Scholar
  13. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  14. Timani KA, Ye L, Ye L, Zhu Y, Wu Z, Gong Z (2004) Cloning, sequencing, expression, and purification of SARS-associated coronavirus nucleocapsid protein for serodiagnosis of SARS. J Clin Virol 30:309–312Google Scholar
  15. Wei W, Xiang H, Tan H (2002) Two tandem promoters to increase gene expression in Lactococcus lactis. Biotechnol Lett 24:1669–1972Google Scholar
  16. Woo PC, Lau SK, Wong BH, Tsoi HW, Fung AM, Chan KH, Tam VK, Peiris JS, Yuen KY (2004) Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. J Clin Microbiol 42:2306–2309Google Scholar
  17. Xiang H, Wei W, Zhang Y, Tan H (2000) Human glutathione-S-transferase: cloning and expression in Lactococcus lactis. Biomol Eng 16:207–209Google Scholar
  18. Xiang H, Wei W, Tan H (2003) Food-grade expression of human glutathione S-transferase and Cu/Zn superoxide dismutase in Lactococcus lactis. Biomol Eng 20:107–112Google Scholar
  19. Xin KQ, Hoshino Y, Toda Y, Igimi S, Kojima Y, Jounai N, Ohba K, Kushiro A, Kiwaki M, Hamajima K, Klinman D, Okuda K (2003) Immunogenicity and protective efficacy of orally administered recombinant Lactococcus lactis expressing surface-bound HIV Env. Blood 102:223–228Google Scholar
  20. Zhu MS, Pan Y, Chen HQ, Shen Y, Wang XC, Sun YJ, Tao KH (2004) Induction of SARS-nucleoprotein-specific immune response by use of DNA vaccine. Immunol Lett 94:237–243Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Huadong Pei
    • 1
    • 2
  • Jingfang Liu
    • 1
    • 2
  • Yun Cheng
    • 1
  • Chaomin Sun
    • 1
    • 2
  • Chen Wang
    • 3
  • Yueping Lu
    • 3
  • Jie Ding
    • 3
  • Jian Zhou
    • 1
  • Hua Xiang
    • 1
    Email author
  1. 1.State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingP.R. China
  2. 2.Graduate school of the Chinese Academy of SciencesBeijingP.R. China
  3. 3.Chao-Yang Hospital Affiliated to Capital University of Medical SciencesBeijingP.R. China

Personalised recommendations