Skip to main content

Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083

Abstract

Arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis releases only C3-linked arabinose residues from double-substituted xylose residues. A genomic library of B. adolescentis DSM20083 was screened for the presence of the axhD3 gene. Two plasmids were identified containing part of the axhD3 gene. The nucleotide sequences were combined and three open reading frames (ORFs) were found. The first ORF showed high homology with xylanases belonging to family 8 of the glycoside hydrolases and this gene was designated xylA. The second ORF was the axhD3 gene belonging to glycoside hydrolase family 43. The third (partial) ORF coded for a putative carboxylesterase. The axhD3 gene was cloned and expressed in Escherichia coli. Several substrates were employed in the biochemical characterization of recombinant AXHd3. The enzyme showed the highest activity toward wheat arabinoxylan oligosaccharides. In addition, β-xylanase from Trichoderma sp. was able to degrade soluble wheat arabinoxylan polymer to a higher extent, after pretreatment with recombinant AXHd3. Arabinoxylan oligosaccharides incubated with a combination of recombinant AXHd3 and an α-l-arabinofuranosidase from Aspergillus niger did not result in a higher maximal release of arabinose than incubation with these enzymes separately.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Altschul SF, Madden TI, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principal of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Campbell JM, Fahey GC, Wolf BW (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr 127:130–136

    CAS  PubMed  Google Scholar 

  • Crittenden R, Karppinen S, Ojanen S, Tenkanen M, Fagerström R, Mättö J, Saarela M, Mattila-Sandholm T, Poutanen K (2002) In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. J Sci Food Agric 82:781–789

    Article  Google Scholar 

  • Crittenden RG, Playne MJ (1996) Production, properties and application of food-grade oligosaccharides. Trends Food Sci Technol 7:353–361

    Article  CAS  Google Scholar 

  • Crociani F, Alessandrini A, Mucci MM, Biavati B (1994) Degradation of complex carbohydrates by Bifidobacterium spp. Int J Food Microbiol 24:199–210

    Article  Google Scholar 

  • Degnan BA, Macfarlane GT (1995) Arabinogalactan utilization in continuous cultures of Bifidobacterium longum: effect of co-culture with Bacteroides thetaiotaomicron. Anaerobe 1:103–112

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 23:350–356

    Google Scholar 

  • Gibson GR (1998) Dietary modulation of the human gut microflora using prebiotics. Brit J Nutr 80:S209–S212

    Google Scholar 

  • Gibson G, Roberfroid M (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotic. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    CAS  PubMed  Google Scholar 

  • Hopkins MJ, Englyst HN, Macfarlane S, Furrie E, Macfarlane GT, McBain AJ (2003) Degradation of cross-linked and non-cross-linked arabinoxylans by the intestinal microbiota in children. Appl Environ Microbiol 69:6354–6360

    Article  Google Scholar 

  • Jaskari J, Kontula P, Siitonen A, Jousimies-Somer H, Mattila-Sandholm T, Poutanen K (1998) Oat β-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. Appl Microbiol Biotechnol 49:175–181

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lorenz WW, Wiegel J (1997) Isolation, analysis, and expression of two genes from Thermoanaerobacterium sp. strain JW/SL YS485: a β-xylosidase and a novel acetyl xylan esterase with cephalosporin C deacetylase activity. J Bacteriol 179:5436–5441

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin Phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Margolles A, De Los Reyes-Gavilán CG (2003) Purification and functional characterization of a novel alpha-l-arabinofuranosidase from Bifidobacterium longum B667. Appl Environ Microbiol 69:5096–5103

    Article  Google Scholar 

  • Okazaki M, Fujikawa S, Matsumoto N (1990) Effect of xylooligosaccharide on the growth of bifidobacteria. Bifidobacteria Microflora 9:77–86

    Google Scholar 

  • Pitson SM, Voragen AGJ, Beldman G (1996) Stereochemical course of hydrolysis catalyzed by arabinofuranosyl hydrolases. FEBS Lett 398:7–11

    Article  Google Scholar 

  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 99:14422–14427

    Google Scholar 

  • Shin H-Y, Lee J-H, Lee J-Y, Han Y-O, Han MJ, Kim D-H (2003a) Purification and characterization of ginsenoside Ra-hydrolyzing β-d-xylosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium. Biol Pharm Bull 26:1170–1173

    Article  Google Scholar 

  • Shin H-Y, Park S-Y, Sung JH, Kim D-H (2003b) Purification and characterization of α-l-arabinopyranosidase and α-l-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc. Appl Environ Microbiol 69:7116–7123

    Article  Google Scholar 

  • Van den Broek LAM, Struijs K, Verdoes JC, Beldman G, Voragen AGJ (2003) Cloning and characterization of two α-glucosidases from Bifidobacterium adolescentis DSM20083. Appl Microbiol Biotechnol 61:55–60

    Google Scholar 

  • Van den Broek LAM, Ton J, Verdoes JC, Beldman G, Voragen AGJ (1999) Synthesis of α-galacto-oligosaccharides by a cloned α-galactosidase from Bifidobacterium adolescentis. Biotechnol Lett 21:441–445

    Google Scholar 

  • Van Laere KMJ, Beldman G, Voragen AGJ (1997) A new arabinofuranohydrolase from Bifidobacterium adolescentis able to remove arabinofuranosyl residues from double-substituted xylose units in arabinoxylan. Appl Microbiol Biotechnol 47:231–235

    Article  Google Scholar 

  • Van Laere KMJ, Hartemink R, Bosveld M, Schols HA, Voragen AGJ (2000) Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. J Agric Food Chem 48:1644–1652

    Article  Google Scholar 

  • Van Laere KMJ, Voragen CHL, Kroef T, Van den Broek LAM, Beldman G, Voragen AGJ (1999) Purification and mode of action of two different arabinoxylan arabinofuranohydrolases from Bifidobacterium adolescentis DSM 20083. Appl Microbiol Biotechnol 51:606–613

    Article  Google Scholar 

  • Vásquez MJ, Alonso JL, Domínguez H, Parajó JC (2000) Xylooligosaccharides: manufacture and applications. Trend Food Sci Technol 11:387–393

    Article  Google Scholar 

  • Vincent F, Charnock SJ, Verschueren KHG, Turkenburg JP, Scott DJ, Offen WA, Roberts S, Pell G, Gilbert HJ, Davies GJ, Brannigan JA (2003) Multifunctional xylooliogsaccharide/cephalosporin C deacetylase revealed by the hexameric structure of the Bacillus subtilis enzyme at 1.9 Å resolution. J Mol Biol 330:593–606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alphons G. J. Voragen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van den Broek, L.A.M., Lloyd, R.M., Beldman, G. et al. Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083. Appl Microbiol Biotechnol 67, 641–647 (2005). https://doi.org/10.1007/s00253-004-1850-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1850-9

Keywords

  • Deduce Amino Acid Sequence
  • Glycoside Hydrolase
  • Bifidobacterium Longum
  • Carbohydrate Esterase
  • Wheat Arabinoxylan