Valuable products from biotechnology of microalgae

Abstract

The biotechnology of microalgae has gained considerable importance in recent decades. Applications range from simple biomass production for food and feed to valuable products for ecological applications. For most of these applications, the market is still developing and the biotechnological use of microalgae will extend into new areas. Considering the enormous biodiversity of microalgae and recent developments in genetic engineering, this group of organisms represents one of the most promising sources for new products and applications. With the development of sophisticated culture and screening techniques, microalgal biotechnology can already meet the high demands of both the food and pharmaceutical industries.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Anagnostidis K, Komárek JA (1985) Modern approach to the classification system of cyanophytes 1—introduction. Arch Hydrobiol Suppl 71:291–302

    Google Scholar 

  2. Anagnostidis K, Komárek JA (1988) Modern approach to the classification systems of cyanophytes 3—oscillatorales. Arch Hydrobiol Suppl 80:327–472

    Google Scholar 

  3. Anagnostidis K, Komárek JA (1990) Modern approach to the classification systems of cyanophytes 5—stigonematales. Algol Stud 59:1–73

    Google Scholar 

  4. Anon (2000) Guide de l’algue alimentaire. CEVA, Paris, p 33

  5. Apt KA, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Article  Google Scholar 

  6. Belay A (1993) Current knowledge on potential health benefits of Spirulina platensis. J Appl Phycol 5:235–240

    Google Scholar 

  7. Blanchot J, Rodier M (1996) Picophytoplankton abundance and biomass in the western tropical Pacific Ocean during the 1992 El Niño year: results from flow cytometry. Deep Sea Res 43:877–895

    Article  Google Scholar 

  8. Borowitzka MA (1995) Microalgae as source of pharmaceuticals and other biologically active compounds. J Appl Algol 7:3–15

    CAS  Google Scholar 

  9. Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  10. Borowitzka MA (1998) Company news. J Appl Phycol 10:417

    Article  Google Scholar 

  11. Borowitzka MA, Borowitzka LJ (1988) Micro-algal biotechnology. Cambridge University Press, Cambridge

    Google Scholar 

  12. Boussiba S, Wu X-Q, Ben-Dov E, Zarka A, Zaritsky A (2000) Nitrogen-fixing cyanobacteria as gene delivery system for expressing mosquitocidal toxins of Bacillus thuringiensis ssp. israelensis. J Appl Phycol 12:461–467

    Article  CAS  Google Scholar 

  13. Chungjatupornchai W (1990) Expression of the mosquitocidal-protein genes of Bacillus thurigiensis ssp. israelensis and the herbicide-resistance gene Bar in Synechocystis PCC6803. Curr Microbiol 21:283–288

    CAS  Google Scholar 

  14. Cohen Z (1999) Chemicals from microalgae. Taylor & Francis, London

    Google Scholar 

  15. Critchley T, Ohno M (1998) Seaweed resources of the world. JICA, Yokosuka

    Google Scholar 

  16. De Luca P, Masacchio A, Taddei R (1981) Acidophilic algae from the fumaroles of Mount Lawu (Java) locus classius of Cyanidium caldarium Geitler. G Bot Ital 115:1–9

    CAS  PubMed  Google Scholar 

  17. De Pauw N, Persoone G (1988) Micro-algae for aquaculture, micro-algal biotechnology. In: Borowitzka MA, Borowitzka LJ (eds) Cambridge University Press, Cambridge, pp 197–221

    Google Scholar 

  18. Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday (1996) Enzymes from psychrophilic organisms, C. FEMS Microbiol Rev 18:189–202

    Google Scholar 

  19. Gimmler H, Degenhardt B (2001) In: Rai LC, Gaur JP (eds) Alkaliphilic and alkali-tolerant algae, algal adaptation to environmental stresses. Springer, Berlin Heidelberg New York

    Google Scholar 

  20. Gounot AM (1986) Psychrophilic and psychrotrophic microorganisms. Experientia 42:1192–1197

    CAS  PubMed  Google Scholar 

  21. Grobbelaar JU, Kroon BMA, Whitton BA (1996) Opportunities from micro- and macroalgae. J Appl Phycol 8:261–464

    Google Scholar 

  22. Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the acidothermophilic red alga Galderia sulphuria. Plant Cell Physiol 4:633–638

    Google Scholar 

  23. Hirata T, Tanaka M, Ooike M, Tsunomura T, Sakaguchi M (2000) Antioxidant activities of phycocyanobilin prepared from S. platensis. J Appl Phycol 12:435–439

    Article  CAS  Google Scholar 

  24. Kindle KL, Richards KL, Stern DB (1990) Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Clamydomonas reinhardtii. Proc Natl Acad Sci USA 88:1721–1725

    Google Scholar 

  25. Komárek JA, Anagnostidis K (1986) Modern approach to the classification systems of cyanophytes 2-Chroococales. Arch Hydrobiol Suppl 73:157–226

    Google Scholar 

  26. Komárek JA, Anagnostidis K (1989) Modern approach to the classification systems of cyanophytes 4—Nostocales. Arch Hydrobiol Suppl 82:247–345

    Google Scholar 

  27. Kretschmer P, Pulz O, Gudin C, Semenenko V (1995). Biotechnology of Microalgae. (Proceedings of the second European workshop) IGV Institute for Cereal Processing, Potsdam-Rehbrücke

    Google Scholar 

  28. Laing I, Ayala F (1990) In: Akatsuka I (ed) Commercial mass culture techniques for producing microalgae, introduction to applied phycology. SPB, The Hague, pp 447–477

    Google Scholar 

  29. Lavens P, Sorgeloos P (1996) Manual on the production and use of life food for aquaculture. FAO Fish Tech Pap 361:7–42

    Google Scholar 

  30. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  PubMed  Google Scholar 

  31. Luckas B (1995) Selective detection of algal toxins from shellfishes. Chem Unserer Zeit 29:68–75

    CAS  Google Scholar 

  32. Masjuk NP (1973) Morphology, taxonomy, ecology, geographical distribution and utilization of Dunaliella (in Russian). Naukowa, Kiev

  33. Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol 17:477–489

    CAS  Google Scholar 

  34. Muller-Feuga A, Moal J, Kaas R (2003) The microalgae for aquaculture. In: Stottrup JG, McEvoy LA (eds) Life feeds in marine aquaculture. Blackwell, Oxford

    Google Scholar 

  35. Musafarov AM, Taubayev TT (1974). Chlorella (in Russian). FAN, Tashkent

    Google Scholar 

  36. Namikoshi M (1996) Bioactive compounds produced by cyanobacteria. J Int Microbiol Biotechnol 17:373–384

    CAS  Google Scholar 

  37. New MB (1999) Global aquaculture: current trends and challenges for 21st century. World Aquacult 3:8–14

    Google Scholar 

  38. Norton TA, Melkonian M, Andersen RA (1996) Algal biodiversity. Phycologia 35:308–326

    Google Scholar 

  39. Nutrinova (2003) http://www.nutrinova.com/easy2web/internet.nsf/directframe/home?OpenDocument

  40. Ördög V, Szigeti J, Pulz O (1996). Proceedings of the conference on progress in plant sciences from plant breeding to growth regulation. Pannon University, Mosonmagyarovar

    Google Scholar 

  41. Osinga R, Tramper J, Burgess JG, Wijffels RH (1999) Marine bioprocess engineering. Proc Prog Ind Microbiol 35:1–413

    Google Scholar 

  42. Piccardi R, Materassi R, Tredici M (1999) Algae and human affairs in the 21st century. (Abstr Int Conf Appl Algol) Universita degli Studi di Firenze, Firenze

    Google Scholar 

  43. Pulz O (2001) Photobioreactors: production systems of phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  PubMed  Google Scholar 

  44. Pulz O, Scheibenbogen K, Gross W (2000) Biotechnology with cyanobacteria and microalgae. In: Rehm H-J, Reed G (eds) Biotechnology, vol 10, 2nd edn. Wiley-VCH, Weinheim, pp 105–136

    Google Scholar 

  45. Radmer RJ (1996) Algal diversity and commercial algal products. Bioscience 46:263–270

    Google Scholar 

  46. Ragan MA, Chapman DJA (1978) A biochemical phylogeny of the protists. Academic, New York

    Google Scholar 

  47. Richmond A (2004) Handbook of microalgal culture. Blackwell, Oxford

    Google Scholar 

  48. Schreckenbach K, Thürmer C, Loest K, Träger G, Hahlweg R (2001) Der Einfluss von Mikroalgen (Spirulina platensis) in Trockenmischfutter auf Karpfen (Cyprinus carpio). Fischer Teichwirt 1:10–13

    Google Scholar 

  49. Siegelman HW, Guillard RRL (1971) Large-scale culture of algae. In: Colowick SP, Kaplan NO (eds) Methods Enzymol, vol 23. Academic, New York, pp 110–115

    Google Scholar 

  50. Sirenko LA, Kirpenko YA, Kirpenko NI (1999) Influence of metabolites of certain algae on human and animal cell cultures, Int J Algae 1:122–126

    Google Scholar 

  51. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bertram J (eds) Toxic cyanobacteria in water: a guide to public health significance, monitoring and management. Spon, London, pp 41–111

    Google Scholar 

  52. Skulberg OM (2000) Microalgae as a source of bioactive molecules—experience from cyanophyte research. J Appl Phycol 12:341–348

    Article  CAS  Google Scholar 

  53. Spektorova L, Creswell RL, Vaughan D (1997) Closed tubular cultivators. World Aquacult 6:39–43

    Google Scholar 

  54. Weber M, Grimmer A (2001) Lohnt sich der Einsatz von Grünalgen im Ferkelfutter? Landwirtsch Wochenbl Rheinland 2001:34

    Google Scholar 

  55. Xie J, Zhang Y, Li Y, Wang Y (2001) Mixotrophic cultivation of Platymonas subcordiformis. J Appl Phycol 13:343–347

    Article  Google Scholar 

  56. Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt K (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Otto Pulz.

Additional information

By continuing the works and ideas of Dr. Gross, that he could not proceed by himself due a tragic fate in the year 2003, we will keep his place in future not only in the research community but also among all colleagues and other persons who knew him.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pulz, O., Gross, W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65, 635–648 (2004). https://doi.org/10.1007/s00253-004-1647-x

Download citation

Keywords

  • Microalgae
  • Macroalgae
  • Dinoflagellate
  • Chlorella
  • Astaxanthin