Skip to main content

Advertisement

Log in

High-diversity biofilm for the oxidation of sulfide-containing effluents

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the present work, we describe for the first time the utilization of a complex microbial biofilm for the treatment of sulfide-containing effluents. A non-aerated packed-column reactor was inoculated with anoxic lake sediment and exposed to light. A biofilm developed in the column and showed a stable oxidation performance for several weeks. Microbial species composition was analyzed by microscopy, pigment analysis and a bacterial 16S rRNA gene clone library. Colorless sulfur bacteria, green algae and purple sulfur bacteria were observed microscopically. Pigment composition confirmed the presence of algae and purple sulfur bacteria. The clone library was dominated by alpha-Proteobacteria (mostly Rhodobacter group), followed by gamma-Proteobacteria (Chromatiaceae-like and Thiothrix-like aerobic sulfur oxidizers) and the Cytophaga-Flavobacterium-Bacteroides group. Plastid signatures from algae were also present and a few clones belonged to both the beta- (Rhodoferax sp., Thiobacillus sp.) and delta-Proteobacteria (Desulfocapsa sp.) and to the low G+C Gram-positive bacteria (Firmicutes group). The coexistence of aerobic, anaerobic, phototrophic and chemotrophic microorganisms in the biofilm, the species richness found within these metabolic groups (42 operational taxonomic units) and the microdiversity observed within some species could be very important for the long-term functioning and versatility of the reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  • Brock TD (1999) The genus Leucothrix. In: Dworkin T, et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, Berlin Heidelberg New York, http://link.springer-ny.com/link/service/books/10125/

  • Brown ML, Gauthier JJ (1993) Cell density and growth phase as factors in the resistance of a biofilm of Pseudomonas aeruginosa (ATCC 27853) to iodine. Appl Environ Microbiol 59:2320–2322

    CAS  Google Scholar 

  • Brown MRW, Allison DG, Gilbert P (1988) Resilience of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrob Chemother 22:777–783

    CAS  PubMed  Google Scholar 

  • Buisman CJ, Geraats BG, Ijspeert P, Lettinga G (1990) Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotechnol Bioeng 35:50–56

    CAS  Google Scholar 

  • Canter-Lund H, Lund, JWG (1995) Freshwater algae. Their microscopic world explored. Biopress, Bristol

  • Casamayor EO, Schäfer H, Bañeras LL, Pedrós-Alió C, Muyzer G (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulphurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66:499–508

    CAS  PubMed  Google Scholar 

  • Casamayor EO, Pedrós-Alió C, Muyzer G, Amann R (2002) Microheterogeneity in 16S ribosomal DNA-defined bacterial populations from a stratified planktonic environment is related to temporal changes and to ecological adaptations. Appl Environ Microbiol 68:1706–1714

    Article  CAS  PubMed  Google Scholar 

  • Characklis WG, Wilderer PA (1989) Structure and function of biofilms. Wiley, Chichester

  • Cork DJ, Garunas R, Sajjad A (1983) Chlorobium limicola forma thiosulphatophilum: biocatalyst in the production of sulphur and organic carbon from a gas stream containing H2S and CO2. Appl Environ Microbiol 45:913–918

    CAS  Google Scholar 

  • De Wit R, Van Gemerden H (1990) Growth of the photoautotrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimes in the light. FEMS Microbiol Ecol 73:69–76

    Google Scholar 

  • Felske A, Akkermans ADL, Devos WM (1998) Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription PCR in temperature gradient gel electrophoresis fingerprints. Appl Environ Microbiol 64:4581–4587

    CAS  PubMed  Google Scholar 

  • Ferrera I, Sánchez O, Mas J (2004) A new non-aerated illuminated packed-column reactor for the development of sulfide-oxidizing biofilms. Appl Microbiol Biotechnol DOI 10.1007/s00253-004-01581-y

  • Field KG, Gordon D, Wright T, Rappe M, Urbach E, Vergin K, Giovannoni SJ (1997) Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl Environ Microbiol 63:63–70

    Google Scholar 

  • Fischer U (1988) Sulphur in biotechnology. Bio/Technology 6B:463–496

  • Furhman JA, Campbell L (1998) Microbial microdiversity. Nature 393:410–411

    Article  CAS  Google Scholar 

  • Gray ND, Head IM (2001) Linking genetic identity and function in communities of uncultured bacteria. Environ Microbiol 3:481–492

    Article  CAS  PubMed  Google Scholar 

  • Guerrero R, Pedrós-Alió C, Esteve I, Mas J (1987) Communities of phototrophic sulphur bacteria in lakes of the Spanish Mediterranean region. In: Lindholm T (ed) Ecology of photosynthetic prokaryotes. Åbo Academy Press, Turku, pp 125–151

  • Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of the microbial cells. Methods in Microbiol 5B:209–344

    CAS  Google Scholar 

  • Imhoff JF (2001a) The phototrophic alpha-proteobacteria. In: Dworkin, et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, Berlin Heidelberg New York, http://link.springer-ny.com/link/service/books/10125/

  • Imhoff JF (2001b) The phototrophic beta-Proteobacteria. In: Dworkin, et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, Berlin Heidelberg New York, http://link.springer-ny.com/link/service/books/10125/

  • Imhoff JF (2003) The Chromatiaceae. In: Dworkin, et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, Berlin Heidelberg New York, http://link.springer-ny.com/link/service/books/10125/

  • Janssen AJH, Ma SC, Lens P, Lettinga G (1997) Performance of a sulphide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Biotechnol Bioeng 53:32–40

    Article  CAS  Google Scholar 

  • Jensen AB, Webb C (1995) Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microb Technol 17:2–10

    Article  CAS  Google Scholar 

  • Kim BW, Kim IK, Chang HN (1990) Bioconversion of hydrogen sulphide by free and immobilized cells of Chlorobium thiosulphatophylum. Biotechnol Lett 5:381–386

    Google Scholar 

  • Kirchman DL (2002) The ecology of CytophagaFlavobacteria in aquatic environments. FEMS Microbiol Ecol 1317:1–10

    Google Scholar 

  • Kobayashi HA, Stenstrom M, Mah RA (1983) Use of photosynthetic bacteria for hydrogen sulphide removal from anaerobic waste treatment effluent. Water Res 17:579–587

    Article  CAS  Google Scholar 

  • Ludwig W, Strunk O, Klugbauer S, Klugbaur N. Weizeneger M, Neumaier J, et al (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568

    PubMed  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Strehwick JM, et al (2000) The RDP (ribosomal database project) continues. Nucleic Acids Res 28:73–174

    CAS  PubMed  Google Scholar 

  • Nübel U, Engelen B, Felske A, Snaid J, Wieshuber A, Amann RI, et al (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    PubMed  Google Scholar 

  • Nübel U, Garcia-Pichel F, Kuhl M, Muyzer G (1999) Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl Environ Microbiol 65:422–430

    PubMed  Google Scholar 

  • Paul JH, Myers B (1982) Fluorometric determination of DNA in aquatic microorganisms by use of Hoechst 33258. Appl Environ Microbiol 43:1393–1399

    CAS  Google Scholar 

  • Pedrós-Alió C, Guerrero R (1993) Microbial ecology in lake Cisó. Adv Microb Ecol 13:155–209

    Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Google Scholar 

  • Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989

    CAS  PubMed  Google Scholar 

  • Sánchez O, Gemerden H van, Mas J (1996) Description of a redox-controlled sulfidostat for the growth of sulfide-oxidizing phototrophs. Appl Environ Microb 62:3640–3645

    Google Scholar 

  • Schram A, Amann R (1998) In situ structure and function analysis of biofilms. In: Märkl H, Stegmann R (eds) Technik anaerober Prozessw. DECHEMA, Frankfurt am Main, pp 45–54

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA:DNA reassociation and 16S rRNA sequence analysis in the present definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Google Scholar 

  • Stal LJ, Gemerden H van, Krumbein WE (1984) The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J Microbiol Methods 2:295–306

    CAS  Google Scholar 

  • Sublette KL, Sylvester ND (1987) Oxidation of hydrogen sulphide by continuous cultures of Thiobacillus denitrificans. Biotechnol Bioeng 29:753–758

    CAS  Google Scholar 

  • Takayuki E, Li N, Kawamura Y (2001) The anaerobic gram-positive cocci. In: Dworkin, et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, Berlin Heidelberg New York, http://link.springer-ny.com/link/service/books/10125/

  • Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. 1. Quantitative measurements on growing cells of Chromatium okenii. Antonie Van Leeuwenhoek 30:225–238

    PubMed  Google Scholar 

  • Von Canstein H, Kelly S, Li Y, Wagner-Döbler I (2002) Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol 68:2829–2837

    Article  PubMed  Google Scholar 

  • Von Wintzingerode FV, Goebel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    PubMed  Google Scholar 

  • Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13:218–227

    Article  CAS  PubMed  Google Scholar 

  • West NJ, Scanlan DJ (1999) Niche-partitioning of Prochlorococcus populations in a stratified water column in the eastern North Atlantic Ocean. Appl Environ Microbiol 65:2585–2591

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by projects BOS2000-0139 and REN2000-0332-P4 from the Ministerio de Ciencia y Tecnología to J.M.; and I.F. was supported by a FPI fellowship from the Generalitat de Catalunya. E.O.C. benefits from the Programa Ramón y Cajal of the Spanish Ministerio de Ciencia y Tecnología. I.F. is especially grateful to Carles Borrego for his helpful comments about sulfur and pigment data and to Mike Gates for revising part of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ferrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrera, I., Massana, R., Casamayor, E.O. et al. High-diversity biofilm for the oxidation of sulfide-containing effluents. Appl Microbiol Biotechnol 64, 726–734 (2004). https://doi.org/10.1007/s00253-004-1582-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1582-x

Keywords

Navigation