Skip to main content
Log in

A new non-aerated illuminated packed-column reactor for the development of sulfide-oxidizing biofilms

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This paper describes an illuminated reactor that allows the spontaneous development of biofilms aimed at the treatment of sulfide-containing streams. The reactor operates as a sulfidostat and is composed of an illuminated packed-column, in which microorganisms are exposed to constant low substrate concentrations, thereby avoiding inhibition due to high sulfide concentrations. The control system allows highly polluted streams to be oxidized by the microbial biofilm while ensuring the quality of the effluent produced. Both monospecies and multispecies biofilms have been developed. Biofilms undergo changes in light irradiance and sulfide load while providing a consistent reduction of the sulfide levels, down to micromolar concentrations. Both types of biofilm developed differ from stirred reactors in that their specific activities are lower, constituting systems with a slow dynamic behavior and, therefore, they are less sensitive to sudden disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Brown ML, Gauthier JJ (1993) Cell density and growth phase as factors in the resistance of a biofilm of Pseudomonas aeruginosa (ATCC 27853) to iodine. Appl Environ Microbiol 59: 2320–2322

    CAS  Google Scholar 

  • Buisman CJ, Geraats BG, Ijspeert P, Lettinga G (1990) Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotechnol Bioeng 35:50–56

    CAS  Google Scholar 

  • Canstein H von, Kelly S, Li Y, Wagner-Döbler I (2002) Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol 68:2829–2837

    Article  PubMed  Google Scholar 

  • Canter-Lund H, Lund JWG (1995) Freshwater algae. Their microscopic world explored. Biopress, Bristol

  • Cohen Y, Gurevitz M (1999) The Cyanobacteria: ecology, physiology, and molecular genetics. In: Dworkin, et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, Berlin Heidelberg New York, http://link.springer-ny.com/link/service/books/10125/

  • Cork DJ, Garunas R, Sajad A (1983) Chlorobium limicola forma thiosulfatophilum: biocatalyst in the production of sulfur and organic carbon from a gas stream containing H2S and CO2. Appl Environ Microbiol 45:913–918

    CAS  Google Scholar 

  • Ferrera I, Massana R, Casamayor EO, Balagué V, Sánchez O, Pedrós-Alió C, Mas J (2004) High-diversty biofilm for the oxidation of sulfide-containing effluents. Appl Microbiol Biotechnol, DOI 10.1007/s00253-004-1582-x

  • Guerrero R, Pedrós-Alió C, Esteve I, Mas J (1987) Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region. In: Lindholm T (ed) Ecology of photosynthetic prokaryotes. Åbo Academy Press, Turku, pp 125–151

  • Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. Methods Microbiol 5B:209–234

    CAS  Google Scholar 

  • Imhoff JF (2003) The Chromatiaceae. In: Dworkin, et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn, Springer, Berlin Heidelberg New York, http://link.springer-ny.com/link/service/books/10125/

  • Janssen AJH, Ma SC, Lens P, Lettinga G (1997) Performance of a sulfide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Biotechnol Bioeng 53:32–40

    Article  CAS  Google Scholar 

  • Jensen AB, Webb C (1995) Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microb Technol 17:2–10

    Article  CAS  Google Scholar 

  • Kirchman D, Sigda J, Kapuscinski R, Mitchell R (1982) Statistical analysis of the direct count method for enumerating bacteria. Appl Environ Microbiol 44:376–382

    CAS  PubMed  Google Scholar 

  • Kobayashi HA, Stenstrom M, Mah RA (1983) Use of photosynthetic bacteria for hydrogen sulfide removal from anaerobic waste treatment effluent. Water Res 17:579–587

    Article  CAS  Google Scholar 

  • Overmann J (2000) The Chlorobiaceae. In: Dworkin, et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, Berlin Heidelberg New York, http://link.springer-ny.com/link/service/books/10125/

  • Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black sea. Limnol Oceanogr 37:150–155

    CAS  Google Scholar 

  • Pachmayr F (1960) Vorkomen und Bestimmung von Schwefelverbindungen in Mineralwasser. PhD thesis, University of Munich, Munich

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Google Scholar 

  • Sánchez O, Van Gemerden H, Mas J (1996) Description of a redox-controlled sulfidostat for the growth of sulfide-oxidizing phototrophs. Appl Environ Microbiol 60:3640–3645

    Google Scholar 

  • Sánchez O, Van Gemerden H, Mas J (1998) Utilization of reducing power in light-limited cultures of Chromatium vinosum DSM 185. Arch Microbiol 170:411–417

    Article  PubMed  Google Scholar 

  • Schram A, Amann R (1998) In situ structure and function analysis of biofilms. In: Märkl H, Stegmann R (eds) Technik anaerober Prozessw. Dechema, Frankfurt am Main, pp 45–54

  • Stal LJ, Van Gemerden H, Krumbein WE (1984) The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J Microbiol Methods 2:295–306

    CAS  Google Scholar 

  • Sublette KL, Sylvester ND (1987) Oxidation of hydrogen sulfide by continuous cultures of Thiobacillus denitrificans. Biotechnol Bioeng 29:753–758

    CAS  Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. 1. Quantitative measurements on growing cells of Chromatium okenii. Antonie Van Leeuwenhoek 30:225–238

    PubMed  Google Scholar 

  • Van Gemerden H (1984) The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch Microbiol 139:289–294

    Google Scholar 

  • Van Gemerden H, Beeftink HH (1978) Specific rates of substrate oxidation and product formation in autotrophically growing Chromatium vinosum cultures. Arch Microbiol 119:932–943

    Google Scholar 

  • Van Gemerden H, Mas J (1995) Ecology of phototrophic sulphur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 49–85

Download references

Acknowledgements

This work was supported by grants BOS2000-0139 and REN2000-0332-P4 from the Ministerio de Ciencia y Tecnología to J.M. I.F. was supported by a FPI-FI fellowship from the Generalitat de Catalunya. We thank Dr. Carles Borrego from the University of Girona for providing the strain of C. limicola used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ferrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrera, I., Sánchez, O. & Mas, J. A new non-aerated illuminated packed-column reactor for the development of sulfide-oxidizing biofilms. Appl Microbiol Biotechnol 64, 659–664 (2004). https://doi.org/10.1007/s00253-004-1581-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1581-y

Keywords

Navigation