Skip to main content
Log in

Characterisation of nitrilase and nitrile hydratase biocatalytic systems

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biocatalytic transformations converting aromatic and arylaliphatic nitriles into the analogous related amide or acid were investigated. These studies included synthesis of the β-substituted nitrile 3-hydroxy-3-phenylpropionitrile, subsequent enrichment and isolation on this substrate of nitrile-degrading microorganisms from the environment, and a comparative study of enzymatic reactions of nitriles by resting cell cultures and enzymes. Each biocatalyst exhibited a distinctive substrate selectivity profile, generally related to the length of the aliphatic chain of the arylaliphatic nitrile and the position of substituents on the aromatic ring or aliphatic chain. Cell-free nitrilases generally exhibited a narrower substrate range than resting whole cells of Rhodococcus strains. The Rhodococcus strains all exhibited nitrile hydratase activity and converted β-hydroxy nitriles (but did not demonstrate enantioselectivity on this substrate). The biocatalysts also mediated the synthesis of a range of α-hydroxy carboxylic acids or amides from aldehydes in the presence of cyanide. The use of an amidase inhibitor permits halting the nitrile hydratase/amidase reaction at the amide intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Scheme 5

Similar content being viewed by others

References

  • Almatawah QA, Cramp R, Cowan DA (1999) Characterisation of an inducible nitrilase from a thermophilic bacillus. Extremophiles 3:283–291

    CAS  PubMed  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60: 33–44

    Article  CAS  PubMed  Google Scholar 

  • Bauer R, Knackmuss H, Stolz A (1998) Enantioselective hydration of 2-arylpropionitriles by a nitrile hydratase from Agrobacterium tumefaciens strain d3. Appl Microbiol Biotechnol 49: 89–95

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Beard T, Cohen MA, Parratt JS, Turner NJ, Crosby J, Moillet J (1993) Stereoselective hydrolysis of nitriles and amides under mild conditions using whole cell catalyst. Tetrahedron Asym 4 1085–1104

    Google Scholar 

  • Blakey A, Colby J, Williams E, O’Reilly C (1995) Regio- and stereo-specific nitrile hydratase from Rhodococcus AJ270. FEMS Microbiol Lett 129: 47–62

    Article  Google Scholar 

  • Bunch A (1998) Biotransformation of nitriles by rhodococci. Antonie van Leeuwenhoek 74:89–97

    Article  CAS  PubMed  Google Scholar 

  • Cohen M, Sawden J, Turner NJ (1990) Selective hydrolysis of nitriles under mild conditions by an enzyme. Tetrahedron Lett 31:7223–7226

    Article  CAS  Google Scholar 

  • Colby J, Snell D, Black GW (2000) Immobilization of Rhodococcus AJ270 and use of entrapped biocatalyst for the production of acrylic acid. Chemical Monthly (Monatshefte für Chemie) 131:655–666

    Google Scholar 

  • Dadd MR, Claridge TDW, Pettman AJ, Knowles CJ (2001a) Biotransformation of benzonitrile to benzohydroxamic acid by Rhodococcus rhodochrous in the presence of hydroxylamine. Biotechnol Lett 23: 221–225

    Article  CAS  Google Scholar 

  • Dadd MR, Claridge TDW, Walton R, Pettman AJ, Knowles CJ (2001b) Regioselective biotransformation of the dinitrile compounds 2-, 3- and 4-(cyanomethyl) benzonitrile by the soil bacterium Rhodococcus rhodochrous LL100–21. Enz Microbial Technol 29:20–27

    Article  CAS  Google Scholar 

  • DeSantis G, Zhu Z, Greenberg WA, Wong K, Chaplin J, Hanson SR, Farwell B, Nicholson LW, Rand CL, Weiner DP, Robertson DE, Burk MJ (2002) An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J Am Chem Soc 124:9024–9025

    Article  CAS  PubMed  Google Scholar 

  • Effenberger F, Graef BW (1998) Chemo- and enantioselective hydrolysis of nitriles and acid amides, respectively, with resting cells of Rhodococcus sp C3II and Rhodococcus erythropolis MP50. J Biotechnol 60:165–174

    Article  CAS  Google Scholar 

  • Effenberger F, Osswald S (2001a) Enantioselective hydrolysis of (R,S)-2-fluoroacetonitriles using nitrilase from Arabidopsis thaliana. Tetrahedron Asym 12:279–285

    Article  CAS  Google Scholar 

  • Effenberger F, Osswald S (2001b) (E)-Selective hydrolysis of (E,Z)-α,β-unsaturated nitriles by the recombinant nitrilase AtNIT1 from Arabidopsis thaliana. Tetrahed Asym 12:2581–2587

    Article  CAS  Google Scholar 

  • Faber K (1992) Biotransformations in organic chemistry. Springer, Berlin Heidelberg New York, pp 113–134

  • Fallon RD, Stieglitz B, Turner I (1997) A Pseudomonas putida capable of enantioselective hydrolysis of nitriles. Appl Microbiol Biotechnol 47:156–161

    CAS  Google Scholar 

  • Gavagan JE, Fager SK, Fallon RD, Folsom PW, Herkes FE, Eisenberg A, Hann EC, DiCosimo R (1998) Chemoenzymatic production of lactams from aliphatic α,ω-dinitriles. J Org Chem 63:4792–4801

    Article  CAS  Google Scholar 

  • Hirrlinger B, Stolz A, Knackmuss H-J (1997) Formation of a chiral hydroxamic acid with an amidase from Rhodococcus erythropolis MP50 and subsequent chemical Lossen rearrangement to a chiral amine. Appl Environ Microbiol 63:3390–3393

    CAS  Google Scholar 

  • Kamal A, Khanna GBR (2001) A facile preparation of (±)-β-hydroxy nitriles and their enzymatic resolution with lipases. Tetrahed Asym 12:405–410

    Article  CAS  Google Scholar 

  • Klempier N, de Raadt A, Faber K, Griengl H (1991) Selective transformation of nitriles into amides and carboxylic acids by an immobilized nitrilase. Tetrahedron Lett 32:341–344

    Article  CAS  Google Scholar 

  • Kobayashi M, Goda M, Shimizu S (1999) Hydrazide synthesis: novel substrate specificity of amidase. Biochem Biophys Res Comm 256:415–418

    Article  CAS  PubMed  Google Scholar 

  • Layh N, Hirrlinger B, Stolz A, Knackmuss H-J (1997) Enrichment strategies for nitrile-hydrolysing bacteria. Appl Microbiol Biotechnol 47:668–674

    Article  CAS  Google Scholar 

  • Layh N, Parratt J, Willetts A (1998) Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J Mol Catalysis B: Enzymatic 5:467–474

    Google Scholar 

  • Martínková L, Krěn V (2002) Nitrile-and amide-converting microbial enzymes: stereo-, regio- and chemoselectivity. Biocat Biotrans 20:73–93

    Article  Google Scholar 

  • Martínková L, Stolz A, Knackmuss HJ (1996) Enantioselectivity of the nitrile-hydratase from Rhodococcus equi A4 towards substituted (R,S)-2-arylpropionitriles. Biotechnol Lett 18:1073–76

    Google Scholar 

  • Osswald S, Wajant H, Effenberger F (2002) Characterization and synthetic applications of recombinant AtNIT1 from Arabidopsis thaliana. Eur J Biochem 269:680–687

    CAS  PubMed  Google Scholar 

  • Payne MS, Wu S, Fallon RD, Tudor G, Stieglitz B, Turner IM and Nelson MJ (1997) A stereoselective cobalt-containing nitrile hydratase. Biochemistry 36:5447–5454

    CAS  PubMed  Google Scholar 

  • Prepechalová I, Martínková L, Stolz A, Ovesna M, Bezouska K, Kopecky J, Krěn V (2001) Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus equi A4. Appl Microbiol Biotechnol 55:150–156

    CAS  PubMed  Google Scholar 

  • Sugai T, Yamakazi T, Yokoyama M, Ohta H (1997) Biocatalysis in organic synthesis: the use of nitrile- and amide-hydrolyzing microorganisms. Biosci Biotech Biochem 61:1419–1427

    CAS  Google Scholar 

  • Taylor SK, Chmiel NH, Simons LJ, Vyvyan JR (1996) Conversion of hydroxy nitriles to lactones using Rhodococcus rhodochrous whole cells. J Org Chem. 61:9084–9085

    Google Scholar 

  • Vogel AI (1989) In: Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (eds) Vogel’s textbook of practical organic chemistry, 5th edn. Longman Scientific and Technical, New York pp 747, 753

  • Wegman MA, Heinemann U, Stolz A, van Rantwijk F, Sheldon RA (2000) Stereoretentive nitrile hydratase-catalysed hydration of D-phenylglycine nitrile. Org Process Res Dev 4:318–322

    Article  CAS  Google Scholar 

  • Wegman MA, Heinemann U, van Rantwijk F, Stolz A, Sheldon RA (2001) Hydrolysis of d,l-phenylglycine nitrile by new bacterial cultures. J Mol Catal B: Enzymatic 11: 249–253

    Google Scholar 

  • Weiner DP, Chaplin JA (2000) Methods for producing enantiomerically pure α-substituted carboxylic acids. Patent WO 01/48175

  • Wieser M, Nagasawa T (2000) Stereoselective nitrile-converting enzymes. In: Patel RN (ed) Stereoselective biocatalysis. Marcel Dekker, New York, pp 461–486

  • Wieser M, Takeuchi K, Wada Y, Yamada H, Nagasawa T (1998) Low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1: purification, substrate specificity and comparison with analogous high-molecular-mass enzyme. FEMS Microbiol Lett 169:17–22

    Article  CAS  Google Scholar 

  • Yamamoto K, Oishi K, Fujimatsu I, Komatsu K-I (1991) Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl Environ Microbiol 57:3028–3032

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to Dr Maryke Henton, of Onderstepoort Veterinary Institute’s Bacteriology Laboratory, South Africa, for assistance with microbial taxonomy; Dr Gert Marais for additional microbial strains, and Dr Andreas Bommarius for suggesting target compounds. We would also like to thank Jülich Fine Chemicals (Germany), Novozymes (Denmark), BioCatalytics Inc. (USA), and Prof. Lutz Fischer of the Institute of Food Technology, University of Stuttgart-Hohenheim for donation of biocatalysts. D. Brady would like to express his appreciation to the Delft University of Technology for a fellowship to support this work, to Drs LM van Langen, RK Mitra, and ML Bode for useful discussions, N Wilde and C van der Westhuizen for technical assistance, and Dr Lesley Robertson and staff of the Department of Biotechnology (Delft University of Technology) for use of facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Brady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, D., Beeton, A., Zeevaart, J. et al. Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Appl Microbiol Biotechnol 64, 76–85 (2004). https://doi.org/10.1007/s00253-003-1495-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1495-0

Keywords

Navigation