Advertisement

Applied Microbiology and Biotechnology

, Volume 63, Issue 3, pp 274–281 | Cite as

Conversion of aliphatic 2-acetoxynitriles by nitrile-hydrolysing bacteria

  • U. Heinemann
  • C. Kiziak
  • S. Zibek
  • N. Layh
  • M. Schmidt
  • H. Griengl
  • A. StolzEmail author
Original Paper

Abstract

The enzymatic hydrolysis of the nitrile group of different 2-acetoxynitriles was investigated in order to obtain catalysts that chemoselectively hydrolyse nitriles in the presence of ester groups. The biotransformation of four 2-acetoxynitriles [2-acetoxybutenenitrile (ABN), 2-acetoxyheptanenitrile (AHN), 2-acetoxy-2-(2-furyl)acetonitrile (AFN), and 2-acetoxy-2,3,3-trimethylbutanenitrile (ATMB)] by different bacterial strains that synthesise nitrilases or nitrile hydratases was studied. ABN, AHN and AFN were converted by various microorganisms belonging to different bacterial genera (e.g. Pseudomonas or Rhodococcus) expressing either nitrilase or nitrile hydratase activities. In contrast, no metabolism of the sterically hindered substrate ATMB was observed. All wild-type strains investigated formed considerable amounts of cyanide and aldehydes from the 2-acetoxynitriles. This indicated the presence of esterases converting the 2-acetoxynitriles to 2-hydroxynitriles, which then spontaneously decomposed to the corresponding aldehydes and cyanide. In order to suppress unwanted side-reactions, biotransformations were performed with recombinant Escherichia coli strains that heterologously expressed nitrilase activities originating from Pseudomonas, Rhodococcus, or Synechocystis strains. The attempted conversion of the 2-acetoxynitriles to almost stoichiometric amounts of the corresponding 2-acetoxycarboxylic acids was finally achieved by using either a recombinant E. coli strain that highly overexpressed the nitrilase gene from the pseudomonad or the purified enzyme derived from this strain.

Keywords

Nitrile Synechocystis Rhodococcus Esterase Activity Mandelonitrile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bauer R, Hirrlinger B, Layh N, Stolz A, Knackmuss H-J (1994) Enantioselective hydrolysis of racemic 2-phenylpropionitrile and other (R,S)-2-arylpropionitriles by a new bacterial isolate, Agrobacterium tumefaciens strain d3. Appl Microbiol Biotechnol 42:1–7Google Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  3. Bunch AW (1998) Nitriles. In: Rehm HJ, Reed G (eds) Biotechnology, vol 8a. Biotransformations I. Wiley-VCH Weinheim, pp 277–324Google Scholar
  4. Effenberger F, Oßwald S (2001) Enantioselective hydrolysis of (RS)-2-fluoroarylacetonitriles using nitrilase from Arabidopsis thaliana. Tetrahedron Asymmetry 12:279–285CrossRefGoogle Scholar
  5. Effenberger F, Förster S, Wajant H (2000) Hydroxynitrile lyases in stereoselective catalysis. Curr Opin Biotechnol 11:532–539CrossRefPubMedGoogle Scholar
  6. Fukuda Y, Harada T, Izumi Y (1973) Formation of l-α-hydroxyacids from d,l-α-hydroxynitriles by Torulopsis candida GN405. J Ferment Technol 51:393–397Google Scholar
  7. Gassman PG, Talley JJ (1978) Cyanohydrins—a general synthesis. Tetrahedron Lett 40:3773–3776CrossRefGoogle Scholar
  8. Goullet P (1973) An esterase zymogram of Escherichia coli. J Gen Microbiol 77:27–35PubMedGoogle Scholar
  9. Goullet P, Picard B, Laget PF (1984) Purification and properties of carboxylesterase B of Escherichia coli. Ann Microbiol (Paris) 135A:375–387Google Scholar
  10. Griengl H, Schwab H, Fechter M (2000) The synthesis of chiral cyanohydrins by oxynitrilases. Trends Biotechnol 18:252–256CrossRefPubMedGoogle Scholar
  11. Harper DB (1977) Microbial metabolism of aromatic nitriles. Enzymology of the C-N cleavage by Nocardia sp. (Rhodochrous group) N.C.I.B. 11216. Biochem J 165:309–319PubMedGoogle Scholar
  12. Haruki M, Oohashi Y, Mizuguchi S, Matsuo Y, Morikawa M, Kanaya S. (1999) Identification of catalytically essential residues in Escherichia coli esterase by site-directed mutagenesis. FEBS Lett 454:262–266CrossRefPubMedGoogle Scholar
  13. Heinemann U, Engels D, Kiziak C, Mattes R, Stolz A (2003) Cloning, heterologous expression and enzymatic characterization of a nitrilase from the cyanobacterium Synechocystis spp. PCC6803. Appl Environ Microbiol 69: (in press)Google Scholar
  14. Kakeya H, Sakai N, Sugai T, Ohta H (1991) Preparation of optically active α-hydroxy acid derivatives by microbial hydrolysis of cyanhydrins and its application to the synthesis of (R)-4-dodecanolide. Agric Biol Chem 55:1877–1881Google Scholar
  15. Kiziak C (1998) Heterologe Expression der Nitrilase aus Pseudomonas fluorescens EBC191 und chimärer Enzymvarianten in E. coli. Reinigung, Stabilisierung und biochemische Charakterisierung der Enzyme. Diplomarbeit, Universität StuttgartGoogle Scholar
  16. Kobayashi M, Shimizu S (1994) Versatile nitrilases: nitrile-hydrolysing enzymes. FEMS Microbiol Lett 120:217–224CrossRefGoogle Scholar
  17. Kobayashi M, Yanaka N, Nagasawa T, Yamada H (1990) Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. J Bacteriol 172:4807–4815PubMedGoogle Scholar
  18. Layh N, Stolz A, Förster S, Effenberger F, Knackmuss H-J (1992) Enantioselective hydrolysis of O-acetylmandelonitrile to O-acetylmandelic acid by bacterial nitrilases. Arch Microbiol 158:405–411Google Scholar
  19. Layh N, Stolz A, Böhme J, Effenberger F, Knackmuss H-J (1994) Enantioselective hydrolysis of racemic naproxen nitrile and naproxen amide to S-naproxen by new bacterial isolates. J Biotechnol 33:175–182PubMedGoogle Scholar
  20. Layh N, Hirrlinger B, Stolz A, Knackmuss H-J (1997) Enrichment strategies for nitriles hydrolysing bacteria. Appl Microbiol Biotechnol 47:668–674CrossRefGoogle Scholar
  21. Martínková L, Křen V (2002) Nitrile- and amide-converting microbial enzymes: stereo-, regio- and chemoselectivity. Biocatal Biotransform 20:79–93Google Scholar
  22. Nagasawa T, Yamada H (1995) Microbial production of commodity chemicals. Pure Appl Chem 67:1241–1256Google Scholar
  23. Nagasawa T, Mauger J, Yamada H (1990) A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Eur J Biochem 194:765–772PubMedGoogle Scholar
  24. Peist R, Koch A, Bolek P, Sewitz S, Kolbus T, Boos W (1997) Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity. J Bacteriol 179:7679–7686PubMedGoogle Scholar
  25. Piotrowski M, Schönfelder S, Weiler EW (2001) The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode β-cyano-l-alanine hydratase/nitrilase. J Biol Chem 276:2616–2621PubMedGoogle Scholar
  26. Raadt A de, Klempier N, Faber K, Griengl H (1992) Chemoselective enzymatic hydrolysis of aliphatic and alicyclic nitriles. J Chem Soc Perkin Trans I:137–140Google Scholar
  27. Ress-Löschke M, Hauer B, Mattes R, Engels D (2000) Nitrilase aus Rhodococcus rhodochrous NCIMB 11216. German patent application No DE 10010149A1Google Scholar
  28. Schulze B (2002) Hydrolysis and formation of C-N bonds. In: Drauz K, Waldmann H (eds) Enzyme catalysis in organic synthesis, vol II. Wiley-VCH, Weinheim, pp 699–715Google Scholar
  29. Stevenson DE, Feng R, Dumas F, Groleau D, Mihoc A, Storer AC (1992) Mechanistic and structural studies on Rhodococcus ATCC 39484 nitrilase. Biotechnol Appl Biochem 15:283–302PubMedGoogle Scholar
  30. Stumpp T, Wilms B, Altenbuchner J (2000) Ein neues, l-Rhamnose-induzierbares Expressionssystem für Escherichia coli. Biospektrum 6:33–36Google Scholar
  31. Trott S, Bauer R, Knackmuss H-J, Stolz A (2001) Genetic and biochemical characterization of an enantioselective amidase from Agrobacterium tumefaciens d3. Microbiology 147:1815–1824PubMedGoogle Scholar
  32. Yamamoto K, Fujimatsu I, Komatsu K-I (1992) Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC 8750 responsible for enantioselective hydrolysis of mandelonitrile. J Ferment Bioeng 73:425–430Google Scholar
  33. Zollner H (1989) Handbook of enzyme inhibitors. VCH, Weinheim, GermanyGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • U. Heinemann
    • 1
  • C. Kiziak
    • 1
    • 3
  • S. Zibek
    • 1
    • 5
  • N. Layh
    • 1
    • 4
  • M. Schmidt
    • 2
  • H. Griengl
    • 2
  • A. Stolz
    • 1
    Email author
  1. 1.Institut für MikrobiologieUniversität StuttgartStuttgartGermany
  2. 2.Institut für Organische ChemieTechnische Universität GrazGrazAustria
  3. 3.Lonza AGVispSwitzerland
  4. 4.R.P. Scherer GmbHEberbachGermany
  5. 5.Institut für BioverfahrenstechnikUniversität StuttgartGermany

Personalised recommendations