Skip to main content
Log in

Conversion of aliphatic 2-acetoxynitriles by nitrile-hydrolysing bacteria

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The enzymatic hydrolysis of the nitrile group of different 2-acetoxynitriles was investigated in order to obtain catalysts that chemoselectively hydrolyse nitriles in the presence of ester groups. The biotransformation of four 2-acetoxynitriles [2-acetoxybutenenitrile (ABN), 2-acetoxyheptanenitrile (AHN), 2-acetoxy-2-(2-furyl)acetonitrile (AFN), and 2-acetoxy-2,3,3-trimethylbutanenitrile (ATMB)] by different bacterial strains that synthesise nitrilases or nitrile hydratases was studied. ABN, AHN and AFN were converted by various microorganisms belonging to different bacterial genera (e.g. Pseudomonas or Rhodococcus) expressing either nitrilase or nitrile hydratase activities. In contrast, no metabolism of the sterically hindered substrate ATMB was observed. All wild-type strains investigated formed considerable amounts of cyanide and aldehydes from the 2-acetoxynitriles. This indicated the presence of esterases converting the 2-acetoxynitriles to 2-hydroxynitriles, which then spontaneously decomposed to the corresponding aldehydes and cyanide. In order to suppress unwanted side-reactions, biotransformations were performed with recombinant Escherichia coli strains that heterologously expressed nitrilase activities originating from Pseudomonas, Rhodococcus, or Synechocystis strains. The attempted conversion of the 2-acetoxynitriles to almost stoichiometric amounts of the corresponding 2-acetoxycarboxylic acids was finally achieved by using either a recombinant E. coli strain that highly overexpressed the nitrilase gene from the pseudomonad or the purified enzyme derived from this strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–D.
Fig. 2.
Fig. 3A–C.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Bauer R, Hirrlinger B, Layh N, Stolz A, Knackmuss H-J (1994) Enantioselective hydrolysis of racemic 2-phenylpropionitrile and other (R,S)-2-arylpropionitriles by a new bacterial isolate, Agrobacterium tumefaciens strain d3. Appl Microbiol Biotechnol 42:1–7

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bunch AW (1998) Nitriles. In: Rehm HJ, Reed G (eds) Biotechnology, vol 8a. Biotransformations I. Wiley-VCH Weinheim, pp 277–324

  • Effenberger F, Oßwald S (2001) Enantioselective hydrolysis of (RS)-2-fluoroarylacetonitriles using nitrilase from Arabidopsis thaliana. Tetrahedron Asymmetry 12:279–285

    Article  CAS  Google Scholar 

  • Effenberger F, Förster S, Wajant H (2000) Hydroxynitrile lyases in stereoselective catalysis. Curr Opin Biotechnol 11:532–539

    Article  CAS  PubMed  Google Scholar 

  • Fukuda Y, Harada T, Izumi Y (1973) Formation of l-α-hydroxyacids from d,l-α-hydroxynitriles by Torulopsis candida GN405. J Ferment Technol 51:393–397

    CAS  Google Scholar 

  • Gassman PG, Talley JJ (1978) Cyanohydrins—a general synthesis. Tetrahedron Lett 40:3773–3776

    Article  Google Scholar 

  • Goullet P (1973) An esterase zymogram of Escherichia coli. J Gen Microbiol 77:27–35

    CAS  PubMed  Google Scholar 

  • Goullet P, Picard B, Laget PF (1984) Purification and properties of carboxylesterase B of Escherichia coli. Ann Microbiol (Paris) 135A:375–387

    Google Scholar 

  • Griengl H, Schwab H, Fechter M (2000) The synthesis of chiral cyanohydrins by oxynitrilases. Trends Biotechnol 18:252–256

    Article  CAS  PubMed  Google Scholar 

  • Harper DB (1977) Microbial metabolism of aromatic nitriles. Enzymology of the C-N cleavage by Nocardia sp. (Rhodochrous group) N.C.I.B. 11216. Biochem J 165:309–319

    CAS  PubMed  Google Scholar 

  • Haruki M, Oohashi Y, Mizuguchi S, Matsuo Y, Morikawa M, Kanaya S. (1999) Identification of catalytically essential residues in Escherichia coli esterase by site-directed mutagenesis. FEBS Lett 454:262–266

    Article  CAS  PubMed  Google Scholar 

  • Heinemann U, Engels D, Kiziak C, Mattes R, Stolz A (2003) Cloning, heterologous expression and enzymatic characterization of a nitrilase from the cyanobacterium Synechocystis spp. PCC6803. Appl Environ Microbiol 69: (in press)

  • Kakeya H, Sakai N, Sugai T, Ohta H (1991) Preparation of optically active α-hydroxy acid derivatives by microbial hydrolysis of cyanhydrins and its application to the synthesis of (R)-4-dodecanolide. Agric Biol Chem 55:1877–1881

    CAS  Google Scholar 

  • Kiziak C (1998) Heterologe Expression der Nitrilase aus Pseudomonas fluorescens EBC191 und chimärer Enzymvarianten in E. coli. Reinigung, Stabilisierung und biochemische Charakterisierung der Enzyme. Diplomarbeit, Universität Stuttgart

  • Kobayashi M, Shimizu S (1994) Versatile nitrilases: nitrile-hydrolysing enzymes. FEMS Microbiol Lett 120:217–224

    Article  CAS  Google Scholar 

  • Kobayashi M, Yanaka N, Nagasawa T, Yamada H (1990) Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. J Bacteriol 172:4807–4815

    CAS  PubMed  Google Scholar 

  • Layh N, Stolz A, Förster S, Effenberger F, Knackmuss H-J (1992) Enantioselective hydrolysis of O-acetylmandelonitrile to O-acetylmandelic acid by bacterial nitrilases. Arch Microbiol 158:405–411

    CAS  Google Scholar 

  • Layh N, Stolz A, Böhme J, Effenberger F, Knackmuss H-J (1994) Enantioselective hydrolysis of racemic naproxen nitrile and naproxen amide to S-naproxen by new bacterial isolates. J Biotechnol 33:175–182

    CAS  PubMed  Google Scholar 

  • Layh N, Hirrlinger B, Stolz A, Knackmuss H-J (1997) Enrichment strategies for nitriles hydrolysing bacteria. Appl Microbiol Biotechnol 47:668–674

    Article  CAS  Google Scholar 

  • Martínková L, Křen V (2002) Nitrile- and amide-converting microbial enzymes: stereo-, regio- and chemoselectivity. Biocatal Biotransform 20:79–93

    Google Scholar 

  • Nagasawa T, Yamada H (1995) Microbial production of commodity chemicals. Pure Appl Chem 67:1241–1256

    CAS  Google Scholar 

  • Nagasawa T, Mauger J, Yamada H (1990) A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Eur J Biochem 194:765–772

    CAS  PubMed  Google Scholar 

  • Peist R, Koch A, Bolek P, Sewitz S, Kolbus T, Boos W (1997) Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity. J Bacteriol 179:7679–7686

    CAS  PubMed  Google Scholar 

  • Piotrowski M, Schönfelder S, Weiler EW (2001) The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode β-cyano-l-alanine hydratase/nitrilase. J Biol Chem 276:2616–2621

    CAS  PubMed  Google Scholar 

  • Raadt A de, Klempier N, Faber K, Griengl H (1992) Chemoselective enzymatic hydrolysis of aliphatic and alicyclic nitriles. J Chem Soc Perkin Trans I:137–140

    Google Scholar 

  • Ress-Löschke M, Hauer B, Mattes R, Engels D (2000) Nitrilase aus Rhodococcus rhodochrous NCIMB 11216. German patent application No DE 10010149A1

  • Schulze B (2002) Hydrolysis and formation of C-N bonds. In: Drauz K, Waldmann H (eds) Enzyme catalysis in organic synthesis, vol II. Wiley-VCH, Weinheim, pp 699–715

  • Stevenson DE, Feng R, Dumas F, Groleau D, Mihoc A, Storer AC (1992) Mechanistic and structural studies on Rhodococcus ATCC 39484 nitrilase. Biotechnol Appl Biochem 15:283–302

    CAS  PubMed  Google Scholar 

  • Stumpp T, Wilms B, Altenbuchner J (2000) Ein neues, l-Rhamnose-induzierbares Expressionssystem für Escherichia coli. Biospektrum 6:33–36

    CAS  Google Scholar 

  • Trott S, Bauer R, Knackmuss H-J, Stolz A (2001) Genetic and biochemical characterization of an enantioselective amidase from Agrobacterium tumefaciens d3. Microbiology 147:1815–1824

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Fujimatsu I, Komatsu K-I (1992) Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC 8750 responsible for enantioselective hydrolysis of mandelonitrile. J Ferment Bioeng 73:425–430

    CAS  Google Scholar 

  • Zollner H (1989) Handbook of enzyme inhibitors. VCH, Weinheim, Germany

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stolz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinemann, U., Kiziak, C., Zibek, S. et al. Conversion of aliphatic 2-acetoxynitriles by nitrile-hydrolysing bacteria. Appl Microbiol Biotechnol 63, 274–281 (2003). https://doi.org/10.1007/s00253-003-1382-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1382-8

Keywords

Navigation