Advertisement

Applied Microbiology and Biotechnology

, Volume 63, Issue 3, pp 282–285 | Cite as

Improved GA1 production by Fusarium fujikuroi

  • J. L. Oller-López
  • J. Avalos
  • A. F. Barrero
  • J. E. OltraEmail author
Short Contribution

Abstract.

Recent studies into gibberellin A1 (GA1) showed it to be physiologically more active than GA3 in plants of great agricultural interest, such as tomatoes, rice, peas, and sweet cherries. We describe here a simple procedure for obtaining large quantities of GA1 (1,500 mg/l) by incubating the FKMC1995 strain of Fusarium fujikuroi in a standard complex medium (SCM). We also compare the GA production of this strain with that of two other wild-type strains of F. fujikuroi (IMI58289, m567) in SCM and low-nitrogen medium and discuss the possible biogenetic mechanisms involved in the over-accumulation of GA1 by FKMC1995.

Keywords

Sweet Cherry M567 Strain Simple Incubation Mutant SG121 Strain IMI58289 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements.

This research was financed by the European Community (FEDER programme) project 1FD97-1346-C02-01. We thank Prof. E. Cerdá-Olmedo for his collaboration and suggestions, Dr. J. F. Leslie and Dr. B. Tudzynski for strains FKMC1995 and m567 respectively, Dr. M. Muñoz-Dorado for the facilities provided, J. F. Fernández-Sánchez and A. Salinas-Castillo for the spectrofluorimetric analyses, and our English colleague Dr. J. Trout for revising style and grammar. The procedures described here for producing GA1 are covered under Spanish patent P200203050. The experiments here described comply with the current laws of Spain.

References

  1. Arteca RN (1995) Plant growth substances, principles and applications. Chapman and Hall, New YorkGoogle Scholar
  2. Avalos J, Casadeus J, Cerdá-Olmedo E (1985) Gibberella fujikuroi mutants obtained with UV radiation and N-methyl-N´′nitro-N-nitrosoguanidine. Appl Environ Microbiol 49:187–191PubMedGoogle Scholar
  3. Barrero AF, Oltra JE, Cabrera E, Herrador MM, Rojas FJ, Reyes JF, Godoy F (1992) Gibelactol, a diterpenoid from Gibberella fujikuroi. Nat Prod Lett 1:155–160Google Scholar
  4. Barrero AF, Oltra JE, Herrador MM, Cabrera E, Sánchez JF, Quílez JF, Rojas FJ, Reyes JF (1993). Gibepyrones: α-pyrones from Gibberella fujikuroi. Tetrahedron 49:141–150CrossRefGoogle Scholar
  5. Barrero AF, Oltra JE, Cabrera E, Reyes F, Álvarez M (1999) Metabolism of gibberellins and ent-kaurenoids in mutants of Gibberella fujikuroi. Phytochemistry 50:1133–1140CrossRefGoogle Scholar
  6. Barrero AF, Oltra JE, Cerdá-Olmedo E, Ávalos J, Justicia J (2001) Microbial transformation of ent-kaurenoic acid and its 15-hydroxy derivatives by the SG138 mutant of Gibberella fujikuroi. J Nat Prod 64:222–225CrossRefPubMedGoogle Scholar
  7. Birch AJ, Grove JF, Nixon IS (1960) Gibberellic acid. GB 844,341. Chem Abstr 55:2999dGoogle Scholar
  8. Brückner B, Blechschmidt D (1991) Nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi. Appl Microbiol Biotechnol 35:646–650Google Scholar
  9. Candau R, Avalos J, Cerdá-Olmedo E (1992) Regulation of gibberellin biosythesis in Gibberella fujikuroi. Plant Physiol 100:1184–1188Google Scholar
  10. Fernández-Martín R, Reyes F, Domenech CE, Cabrera E, Bramley PM, Barrero AF, Ávalos J, Cerdá-Olmedo E (1995) Gibberellin biosynthesis in gib mutants of Gibberella fujikuroi. J Biol Chem 270:14970–14974CrossRefPubMedGoogle Scholar
  11. Gaskin P, MacMillan J (1991) GC-MS of the gibberellins and related compounds: methodology and a library of spectra. Cantock′s Enterprises, BristolGoogle Scholar
  12. Geissman TA, Verbiscar AJ, Phinney BO (1966) Studies on the biosynthesis of gibberellins from (−)-kaurenoic acid in cultures of Gibberella fujikuroi. Phytochemistry 5:933–947Google Scholar
  13. Grünzweig JM, Rabinowitch HD, Katan J, Wodner M, Ben-Tal Y (1997) Endogenous gibberellins in foliage of tomato (Lycopersicon esculentum). Phytochemistry 46:811–815CrossRefGoogle Scholar
  14. Hedden P, Phillips AL, Rojas MC, Carrera E, Tudzynski B (2002) Gibberellin biosynthesis in plants and fungi: a case of convergent evolution?. J Plant Growth Regul 20:319–331CrossRefGoogle Scholar
  15. Huanpu M, Blake PS, Browning G, Taylor JM (2001) Metabolism of gibberellins A1 and A3 in fruits and shoots of Prunus avium. Phytochemistry 56:67–76CrossRefPubMedGoogle Scholar
  16. Jinhu L, Fanggui Y (1999) Gibberella fujikuroi strain used for industrial fermentation production of gibberellin A4 and A7. CN 1222575. Chem Abstr 133:42247Google Scholar
  17. Kobayashi M, MacMillan J, Phinney B, Gaskin P, Spray CR, Hedden P (2000) Gibberellin biosynthesis: metabolic evidence for three steps in the early 13-hydroxylation pathway of rice. Phytochemistry 55:317–321CrossRefPubMedGoogle Scholar
  18. Lee MD, Gallazzo JL (2001) Production of high titers of gibberellins GA4 and GA7 by Gibberella fujikuroi strain LTB-1027. US 6287800. Chem Abstr 135:241033Google Scholar
  19. Leslie JF (1991) Mating populations in Gibberella fujikuroi (Fusarium section Liseola). Phytopathology 81:1058–1060Google Scholar
  20. MacMillan J (1997) Biosynthesis of the gibberellin plant hormones. Nat Prod Rep 14:221–243Google Scholar
  21. Mander LN (1992) The chemistry of gibberellins: an overview. Chem Rev 92:573–612Google Scholar
  22. Mihlan M, Homann V, Liu TWD, Tudzynski B (2003) AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol Microbiol 47:975–991CrossRefPubMedGoogle Scholar
  23. O′Donnell K, Cigelnik E, Nirenberg HL (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493Google Scholar
  24. Redemann CT (1959) Gibberellins. US 2,918,413. Chem Abstr 54:23180dGoogle Scholar
  25. Takahashi N, Phinney BO, MacMillan J (1991) Gibberellins. Springer, New YorkGoogle Scholar
  26. Tudzynski B, Holter K (1998) Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet Biol 25:157–170PubMedGoogle Scholar
  27. Voigt K, Schleier S, Brückner B (1995) Genetic variability in Gibberella fujikuroi and some related species of the genus Fusarium based on random amplification of polymorphic DNA (RAPD). Curr Genet 27:528–535PubMedGoogle Scholar
  28. Yaxley JR, Ross JJ, Sheriff LJ, Reid JB (2001) Gibberellin biosynthesis mutations and root development in pea. Plant Physiol 125:627–633CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • J. L. Oller-López
    • 1
  • J. Avalos
    • 2
  • A. F. Barrero
    • 1
  • J. E. Oltra
    • 1
    Email author
  1. 1.Departamento de Química Orgánica, Instituto de Biotecnología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain

Personalised recommendations