Skip to main content
Log in

Novel bioreduction system for the production of chiral alcohols

Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Cite this article

Abstract.

Chiral alcohols are useful intermediates for many pharmaceuticals and chemicals. Enzymatic asymmetric reduction of prochiral carbonyl compounds is a promising method for producing chiral alcohols. There have been many attempts to construct bioreduction systems for the industrial production of chiral alcohols. This review focuses on the establishment of a novel bioreduction system using an Escherichia coli transformant co-expressing genes for carbonyl reductase and cofactor-regeneration enzyme. This bioreduction system could be useful as an all-purpose catalyst for asymmetric reduction reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  • Baker ME, Blasco R (1992) Expansion of the mammalian 3β-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose 4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus. FEBS Lett 301:89–93

    Article  CAS  PubMed  Google Scholar 

  • Baker ME, Luu-The V, Simard J, Labri F (1990) A common ancestor for mammalian 3β-hydroxysteroid dehydrogenase and plant dihydroflavonol reductase. Biochem J 269:558–559

    CAS  PubMed  Google Scholar 

  • Bohren KM, Bullock B, Wermuth B, Gabby KH (1989) The aldo-keto reductase superfamily. J Biol Chem 264:9547–9551

    CAS  PubMed  Google Scholar 

  • Bommarius AS, Schwarm M, Stingl K, Kottenhanh M, Huthmacher K, Drauz K (1995) Synthesis and use of enantiomerically pure tert-leucine. Tetrahedron Asymmetry 6:2851–2888

    Article  CAS  Google Scholar 

  • Chin-Joe I, Straathof AJJ, Pronk JT, Jongejan JA, Heijnen JJ (2001) Influence of the ethanol and glucose supply rate on the rate and enantioselectivity of 3-oxo ester reduction by baker′s yeast. Biotechnol Bioeng 75:29–38

    PubMed  Google Scholar 

  • Csuk R, Glänzer BI (1991) Baker′s yeast-mediated transformations in organic chemistry. Chem Rev 91:49–97

    CAS  Google Scholar 

  • Csuk R, Glänzer BI (2000) Yeast-mediated stereoselective biocatalysis. In: Patel RN (ed) Stereoselective biocatalysis. Dekker, New York, pp 527–578

  • D′Arrigo P, Pedrocchi-Fantoni G, Servi S (1997) Old and new synthetic capacities of baker′s yeast. Adv Appl Microbiol 44:81–123

    CAS  PubMed  Google Scholar 

  • D′Arrigo P, Pedrocchi-Fantoni G, Servi S (2000) Stereoselective synthesis of chiral compounds using whole-cell biocatalysts. In: Patel RN (ed) Stereoselective biocatalysis. Dekker, New York, pp 365–396

  • Grunwald J, Wirts B, Scollar MP, Klibanov AM (1985) Asymmetric oxidoreductions catalyzed by alcohol dehydrogenase in organic solvents. J Am Chem Soc 108:6732–6734

    Google Scholar 

  • Gul-Karaguler N, Sessions RB, Clarke AR, Holbrook JJ (2001) A single mutation in the NAD-specific formate dehydrogenase from Candida methylica allows the enzyme to use NADP. Biotechnol Lett 23:283–287

    Article  CAS  Google Scholar 

  • Hata H, Shimizu S, Hattori S, Yamada H (1989a) Ketopantoyl-lactone reductase from Candida parapsilosis; purification and characterization as a conjugated polyketone reductase. Biochim Biophys Acta 990:175–181

    CAS  PubMed  Google Scholar 

  • Hata H, Shimizu S, Hattori S, Yamada H (1989b) Ketopantoyl lactone reductase is a conjugated polyketone reductase. FEMS Microbiol Lett 58:87–90

    Article  CAS  Google Scholar 

  • Hidalgo ARGD, Akond MA, Kita K, Kataoka M, Shimizu S (2001) Isolation and primary structural analysis of two conjugated polyketone reductases from Candida parapsilosis. Biosci Biotechnol Biochem 65:2785–2788

    Article  CAS  PubMed  Google Scholar 

  • Hummel W (1999) Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments. Trends Biotechnol 17:487–492

    CAS  PubMed  Google Scholar 

  • Hummel W, Kula MR (1989) Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem 184:1–13

    CAS  PubMed  Google Scholar 

  • Jez JM, Bennet MJ, Schlegel BP, Lewis M, Penning TM (1997) Comparative anatomy for the aldo-keto reductase superfamily. Biochem J 326:625–636

    CAS  PubMed  Google Scholar 

  • Jornvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J, Ghosh D (1995) Short-chain dehydrogenase/reductase (SDR). Biochemistry 34:6003–6013

    PubMed  Google Scholar 

  • Kataoka M, Doi Y, Sim TS, Shimizu S, Yamada H (1992a) A novel NADPH-dependent carbonyl reductase of Candida macedoniensis: purification and characterization. Arch Biochem Biophys 294:469–474

    CAS  PubMed  Google Scholar 

  • Kataoka M, Nomura Y, Shimizu S, Yamada H (1992b) Enzymes involved in the NADPH regeneration system coupled with asymmetric reduction of carbonyl compounds in microorganisms. Biosci Biotechnol Biochem 56:820–821

    CAS  Google Scholar 

  • Kataoka M, Sakai H, Morikawa T, Katoh M, Miyoshi T, Shimizu S, Yamada H (1992c) Characterization of aldehyde reductase of Sporobolomyces salmonicolor. Biochim Biophys Acta 1122:57–62

    Article  CAS  PubMed  Google Scholar 

  • Kataoka M, Shimizu K, Sakamoto K, Yamada H, Shimizu S (1995a) Optical resolution of racemic pantolactone with a novel fungal enzyme, lactonohydrolase. Appl Microbiol Biotechnol 43:974–977

    Google Scholar 

  • Kataoka M, Shimizu K, Sakamoto K, Yamada H, Shimizu S (1995b) Lactonohydrolase-catalyzed optical resolution of pantoyl lactone: selection of a potent enzyme producer and optimization of culture and reaction conditions for practical resolution. Appl Microbiol Biotechnol 44:333–338

    CAS  Google Scholar 

  • Kataoka M, Rohani LPS, Yamamoto K, Wada M, Kawabata H, Kita K, Yanase H, Shimizu S (1997) Enzymatic production of ethyl (R)-4-chloro-3-hydroxybutanoate: asymmetric reduction of ethyl 4-chloro-3-oxobutanoate by an Escherichia coli transformant expressing the aldehyde reductase gene from yeast. Appl Microbiol Biotechnol 48:699–703

    Article  CAS  PubMed  Google Scholar 

  • Kataoka M, Rohani LPS, Wada M, Kita K, Yanase H, Urabe I, Shimizu S (1998) Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaterium as a cofactor regenerator in chiral alcohol production system. Biosci Biotechnol Biochem 62:167–169

    CAS  PubMed  Google Scholar 

  • Kataoka M, Yamamoto K, Kawabata H, Wada M, Kita K, Yanase H, Shimizu S (1999) Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 51:486–490

    Article  CAS  PubMed  Google Scholar 

  • Kataoka M, Kotaka A, Hasegawa A, Wada M, Yoshizumi A, Nakamori S, Shimizu S (2002) Old yellow enzyme from Candida macedoniensis catalyzes stereospecific reduction of C=C bond of ketoisophorone. Biosci Biotechnol Biochem 66:2649–2655

    Article  Google Scholar 

  • Kita K, Matsuzaki K, Hashimoto T, Yanase H, Kato N, Chung MCM, Kataoka M, Shimizu S (1996) Cloning of the aldehyde reductase gene from a red yeast, Sporobolomyces salmonicolor, and characterization of the gene and its product. Appl Environ Microbiol 62:2303–2310

    CAS  PubMed  Google Scholar 

  • Kita K, Fukura T, Nakase K, Okamoto K, Yanase H, Kataoka M, Shimizu S (1999a) Cloning, overexpression, and mutagenesis of the Sporobolomyces salmonicolor AKU4429 gene encoding a new aldehyde reductase, which catalyzes the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate. Appl Environ Microbiol 65:5207–5211

    CAS  PubMed  Google Scholar 

  • Kita K, Kataoka M, Shimizu S (1999b) Diversity of 4-chloroacetoacetate ethyl ester-reducing enzymes in yeasts and their application to chiral alcohol synthesis. J Biosci Bioeng 88:591–598

    Article  CAS  Google Scholar 

  • Kita K, Nakase K, Yanase H, Kataoka M, Shimizu S (1999c) Purification and characterization of new aldehyde reductases from Sporobolomyces salmonicolor AKU4429. J Mol Catal B Enzym 6:305–313

    Article  CAS  Google Scholar 

  • Kizaki N, Yasohara Y, Hasegawa J, Wada M, Kataoka M, Shimizu S (2001) Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 55:590–595

    Article  CAS  PubMed  Google Scholar 

  • Kometani T, Yoshii H, Kitatsuji E, Nishimura H, Matsuno R (1993) Large-scale preparation of (S)-ethyl 3-hydroxybutanoate with a high enantiomeric excess through baker′s yeast-mediated bioreduction. J Ferment Technol 76:33–37

    Article  CAS  Google Scholar 

  • Kula MR, Kragl U (2000) Dehydrogenases in the synthesis of chiral compounds. In: Patel RN (ed) Stereoselective biocatalysis. Dekker, New York, pp 839–866

  • Kula MR, Wandrey C (1987) Continuous enzymatic transformation in an enzyme-membrane reactor with simultaneous NADH regeneration. Methods Enzymol 136:9–21

    CAS  PubMed  Google Scholar 

  • Makino Y, Ding JY, Negoro S, Urabe I, Okada H (1989a) Purification and characterization of a new glucose dehydrogenase from vegetative cells of Bacillus megaterium. J Ferment Bioeng 67:374–379

    Article  CAS  Google Scholar 

  • Makino Y, Negoro S, Urabe I, Okada H (1989b) Stability-increasing mutants of glucose dehydrogenase gene from Bacillus megaterium IWG3. J Biol Chem 264:6381–6385

    CAS  PubMed  Google Scholar 

  • Mikami M, Korenaga T, Ohkuma T, Noyori R (2000) Asymmetric activation/deactivation of racemic Ru catalysis for highly enantioselective hydrogenation of ketonic substrates. Angew Chem Int Ed Engl 39:3707–3710

    Article  CAS  PubMed  Google Scholar 

  • Mori K (2000) Chemoenzymatic synthesis of pheromones, terpenes, and other bioregulators. In: Patel RN (ed) Stereoselective biocatalysis. Dekker, New York, pp 59–85

  • Nakamura K, Kawai Y, Nakajima N, Ohno A (1991) Stereochemical control of microbial reduction. 17. A method for controlling the enantioselectivity of reduction with baker′s yeast. J Org Chem 56:4778–4783

    CAS  Google Scholar 

  • Noyori R, Ohkuma T (2001) Asymmetric catalysis by architectural and functional molecular engineering: Practical chemo- and stereoselective hydrogenation of ketones. Angew Chem Int Ed Engl 40:40–73

    Article  CAS  PubMed  Google Scholar 

  • Ogawa J, Shimizu S (1999) Microbial enzymes: new industrial applications from traditional screening methods. Trends Biotechnol 17:13–21

    PubMed  Google Scholar 

  • Ogawa J, Shimizu S (2002) Industrial microbial enzymes: their discovery by screening and use in large-scale production of useful chemicals in Japan. Curr Opin Biotechnol 13:367–375

    Article  CAS  PubMed  Google Scholar 

  • Patel RN, McNamee CG, Benerjee A, Howell JM, Robinson RS, Szarka LJ (1992) Stereoselective reduction of β-keto esters by Geotrichum candidum. Enzyme Microb Technol 14:731–738

    CAS  Google Scholar 

  • Reid MF, Fewson CA (1994) Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20:13–56

    CAS  PubMed  Google Scholar 

  • Serov AE, Popova AS, Fedorchuk VV, Tishkov VI (2002) Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae. Biochem J 367:841–847

    Article  CAS  PubMed  Google Scholar 

  • Shieh WR, Gopalan AS, Sih CJ (1985) Stereochemical control of yeast reductions. V. Characterization of the oxidoreductases involved in the reduction of β-keto esters. J Am Chem Soc 107:2993–2994

    CAS  Google Scholar 

  • Shimizu S, Kataoka M (2002) A novel biocatalytic reduction system for large-scale production of chiral alcohols. In: Biocat (ed) Book of abstracts. International Congress on Biocatalysis. Biocat, Hamburg, p. 228

  • Shimizu S, Hattori S, Hata H, Yamada H (1988a) A novel fungal enzyme, NADPH-dependent carbonyl reductase, showing high specificity to conjugated polyketones. Eur J Biochem 174:37–44

    CAS  PubMed  Google Scholar 

  • Shimizu S, Kataoka M, Chung MCM, Yamada H (1988b) Ketopantoic acid reductase of Pseudomonas maltophilia 845: purification, characterization, and role in pantothenate biosynthesis. J Biol Chem 263:12077–12084

    CAS  PubMed  Google Scholar 

  • Shimizu S, Kataoka M, Katoh M, Morikawa T, Miyoshi T, Yamada H (1990) Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by a microbial aldehyde reductase in an organic solvent-water diphasic system. Appl Environ Microbiol 56:2374–2377

    CAS  Google Scholar 

  • Shimizu S, Kataoka M, Honda K, Sakamoto K (2002) Lactone-ring-cleaving enzymes of microorganisms: their diversity and applications. J Biotechnol 92:187–194

    Article  Google Scholar 

  • Tishkov VI, Galkin AG, Fedorchuk VV, Savitsky PA, Rojkova AM, Gieren H, Kula MR (1999) Pilot scale production and isolation of recombinant NAD+- and NADP+-specific formate dehydrogenases. Biotechnol Bioeng 64:187–193

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Kataoka M, Kawabata H, Yasohara Y, Kizaki N, Hasegawa J, Shimizu S (1998) Purification and characterization of NADPH-dependent carbonyl reductase, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate, from Candida magnoliae. Biosci Biotechnol Biochem 62:280–285

    CAS  PubMed  Google Scholar 

  • Wada M, Kawabata H, Kataoka M, Yasohara Y, Kizaki N, Hasegawa J, Shimizu S (1999a) Purification and characterization of an aldehyde reductase from Candida magnoliae. J Mol Catal B Enzym 6:333–339

    Article  CAS  Google Scholar 

  • Wada M, Kawabata H, Yoshizumi A, Kataoka M, Nakamori S, Yasohara Y, Kizaki N, Hasegawa J, Shimizu S (1999b) Occurrence of multiple ethyl 4-chloro-3-oxobutanoate-reducing enzymes in Candida magnoliae. J Biosci Bioeng 87:144–148

    Article  CAS  Google Scholar 

  • Wada M, Yoshizumi A, Nakamori S, Shimizu S (1999c) Purification and characterization of monovalent cation-activated levodione reductase from Corynebacterium aquaticum M-13. Appl Environ Microbiol 65:4399–4403

    CAS  PubMed  Google Scholar 

  • Wada M, Yoshizumi A, Noda Y, Kataoka M, Shimizu S, Takagi H, Nakamori S (2003) Production of doubly chiral compound, (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone, by two-step enzymatic asymmetric reduction. Appl Environ Microbiol 69:933–937

    Article  CAS  PubMed  Google Scholar 

  • Ward OP, Young CS (1990) Reductive biotransformations of organic compounds by cells or enzymes of yeast. Enzyme Microb Technol 12:482–493

    PubMed  Google Scholar 

  • Wong CH, Drueckhammer DG, Sweers HM (1985) Enzymatic vs fermentive synthesis: thermostable glucose dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis. J Am Chem Soc 107:4028–4031

    CAS  Google Scholar 

  • Xie SX, Ogawa J, Shimizu S (1999) NAD+-dependent (S)-specific secondary alcohol dehydrogenase involved in stereoinversion of 3-pentyn-2-ol catalyzed by Nocardia fusca AKU 2123. Biosci Biotechnol Biochem 63:1721–1729

    CAS  PubMed  Google Scholar 

  • Yamada H, Shimizu S, Kataoka M, Sakai H, Miyoshi T (1990) A novel NADPH-dependent aldehyde reductase, catalysing asymmetric reduction of β-keto acid esters, from Sporobolomyces salmonicolor: purification and characterization. FEMS Microbiol Lett 70:45–48

    CAS  Google Scholar 

  • Yasohara Y, Kizaki N, Hasegawa J, Takahashi S, Wada M, Kataoka M, Shimizu S (1999) Synthesis of optically active ethyl 4-chloro-3-hydroxybutanoate by microbial reduction. Appl Microbiol Biotechnol 51:847–851

    Article  CAS  PubMed  Google Scholar 

  • Yasohara Y, Kizaki N, Hasegawa J, Wada M, Kataoka M, Shimizu S (2000) Molecular cloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase from Candida magnoliae, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate. Biosci Biotechnol Biochem 64:1430–1436

    CAS  PubMed  Google Scholar 

  • Yasohara Y, Kizaki N, Hasegawa J, Wada M, Kataoka M, Shimizu S (2001) Stereoselective reduction of alkyl 3-oxobutanoate by carbonyl reductase from Candida magnoliae. Tetrahedron Asymmetry 12:1713–1718

    Article  CAS  Google Scholar 

  • Yoshizumi A, Wada M, Takagi H, Shimizu S, Nakamori S (2001) Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding monovalent cation-activated levodione reductase from Corynebacterium aquaticum M-13. Biosci Biotechnol Biochem 65:830–836

    Article  PubMed  Google Scholar 

  • Zhou B, Gopalan AS, VanMiddlesworth F, Shieh WR, Sih CJ (1983) Stereochemical control of yeast reduction. I. Asymmetric synthesis of l-carnitine. J Am Chem Soc 105:5925–5926

    CAS  Google Scholar 

Download references

Acknowledgements.

This work was supported in part by a Grant-in-Aid for Scientific Research (number 13853009, to S.S. and number 14656039, to M.K.) from the Japan Society for the Promotion of Science. This work was carried out as part of the Project for Development of a Technological Infrastructure for Industrial Bioprocesses on R&D of New Industrial Science and Technology Frontiers, Ministry of Economy, Trade and Industry (METI), entrusted by the New Energy and Industrial Technology Development Organization (NEDO) to S.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shimizu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kataoka, M., Kita, K., Wada, M. et al. Novel bioreduction system for the production of chiral alcohols. Appl Microbiol Biotechnol 62, 437–445 (2003). https://doi.org/10.1007/s00253-003-1347-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1347-y

Keywords

Navigation