Skip to main content
Log in

Silica–alginate composites for microencapsulation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Optimisation of membrane properties of alginate microcapsules is a key factor for the application of microencapsulation techniques to bioartificial organ elaboration. Coacervation and layer-by-layer processes involving additional biopolymers have been extensively studied. Recently, the use of silica as a membrane-forming agent was investigated. This approach was rendered possible by the development of biocompatible routes to silica formation. The composites exhibit enhanced mechanical and thermal stability as well as suitable diffusion properties. Moreover, encapsulated enzymes and cells retain their biological activities. Similarly, silica can be associated to many other biopolymers, opening a promising route for new biocomposites design and biotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–c.
Fig. 3a, b.
Fig. 4.

Similar content being viewed by others

References

  • Armanini L, Carturan G, Boninsegna S, Dal Monte R, Muraca M (1999) SiO2 entrapment of animal cells. Part 2: protein diffusion through collagen membranes coated with sol-gel SiO2. J Mater Chem 9:3057–3060

    Article  CAS  Google Scholar 

  • Avnir D, Braun S, Lev O, Ottolenghi M (1994) Enzymes and other proteins entrapped in sol-gel materials. Chem Mater 6:1605–1614

    CAS  Google Scholar 

  • Barbotin JN, Nava Saucedo JE (1996) Bioencapsulation of living cells by entrapment in polysaccharide gels. In: Dimitriu S (ed) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York, pp 749–774

  • Bartkowiak A, Hunkeler D (1999) Alginate-oligochitosan microcapsules: a mechanistic study relating membrane and capsule properties to reaction conditions. Chem Mater 11:2486–2492

    Article  CAS  Google Scholar 

  • Bhatia RB, Brinker CJ, Gupta AK, Singh AK (2000) Aqueous sol-gel process for protein encapsulation. Chem Mater 12:2434–2441

    Article  CAS  Google Scholar 

  • Boninsegna S, Dal Toso R, Dal Monte R, Carturan G (2003) Alginate microspheres loaded with animal cells and coated by a siliceous layer. J Sol-Gel Sci Technol 26:1154–1157

    Google Scholar 

  • Brasack I, Bottcher H, Hempel U (2000) Biocompatibility of modified silica-protein composite layers. J Sol-Gel Sci Technol 19:479–482

    Google Scholar 

  • Brinker CJ, Scherrer G (1990) The physics and chemistry of sol-gel processing. Academic, Boston

  • Carturan G, Dal Monte R, Muraca M (2000) SiO2 entrapment of animal cells for hybrid bioartificial organs. Mat Res Soc Symp Proc 628:CC10.1.1–14

    Google Scholar 

  • Chandra R, Rutsgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  • Coradin T, Mercey E, Lisnard L, Livage J (2001) Design of silica-coated microcapsules for bioencapsulation. Chem Commun 2496–2497

  • Coradin T, Coupé A, Livage J (2002) Influence of DNA, alginate, lysozyme and bovine serum albumin on sodium silicate condensation. Mat Res Soc Symp Proc 724:N7.20.1–6

    Google Scholar 

  • Coradin T, Livage J (2003) Synthesis and characterization of alginate/silica biocomposites. J Sol-Gel Sci Technol 26:1165–1168

    Google Scholar 

  • Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 227:1232–1237

    Article  Google Scholar 

  • Ellerby LM, Nishida CR, Nishida F, Yamanaka SA, Dunn B, Valentine JS, Zink JI (1992) Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method. Science 255:1113–1115

    CAS  PubMed  Google Scholar 

  • Ferrer ML, del Monte F, Levy D (2002) A novel and simple alcohol-free sol-gel route for encapsulation of labile proteins. Chem Mater 14:3619–3621

    Article  CAS  Google Scholar 

  • Fukushima Y, Okamura K, Imai K, Motai H (1988) A new immobilization technique of whole cells and enzymes with colloidal silica and alginate. Biotechnol Bioeng 32:584–594

    CAS  Google Scholar 

  • Gill I, Ballesteros A (1998) Encapsulation of biologicals within silicate, siloxane and hybrid sol-gel polymers: an efficient and generic approach. J Am Chem Soc 120:8587–8598

    Article  CAS  Google Scholar 

  • Gill I, Ballesteros A (2000) Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulated biologicals . Trends Biotechnol 18:282–296

    Article  CAS  PubMed  Google Scholar 

  • Goosen MFA, O'Shea GM, Gharapetian HM, Chou S, Sun AM (1985) Optimization of microcapsulation parameters: semipermeable microcapsules as a bioartificial pancreas. Biotechnol Bioeng 27:146–150

    CAS  Google Scholar 

  • Heichal-Segal O, Rappoport S, Braun S (1995) Immobilization in alginate-silicate sol-gel matrix protects β-galactosidase against thermal and chemical denaturation. Bio/technology 13:798–800

    Google Scholar 

  • Hertzberg S, Moen E, Vogelsang C, Ostgaard K (1995) Mixed photo-cross-linked polyvinyl alcohol and calcium alginate gels for cell entrapment. Appl Microbiol Biotechnol 43:10–17

    Article  CAS  Google Scholar 

  • Iler RK (1979) The chemistry of silica: solubility, polymerisation, colloid and surface properties, biochemistry. Wiley-Interscience, New York

    Google Scholar 

  • Judenstein P, Sanchez C (1996) Hybrid organic-inorganic materials: a land of multidisciplinarity. J Mater Chem 6:511–525

    Google Scholar 

  • Lim F, Sun A (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    CAS  PubMed  Google Scholar 

  • Livage J. Coradin T, Roux C (2001) Encapsulation of biomolecules in silica gels. J Phys Condens Matter 13:R673–691

    Article  CAS  Google Scholar 

  • Lloyd-George I, Chang TMS (1995) Characterization of free and alginate-polylysine-alginate microencapsulated Erwinia herbicola for the conversion of ammonia, pyruvate, and phenol into L-Tyrosine. Biotechnol Bioeng 48:706–714

    CAS  Google Scholar 

  • Nassif N, Rager MN, Bouvet O, Roux C, Coradin T, Livage J (2002) Living bacteria in silica gels. Nature Materials 1:42–45

    Article  CAS  PubMed  Google Scholar 

  • Nava Saucedo JE, Audras B, Jan S, Bazinet CE, Barbotin JN (1994) Factors affecting densities, distribution and growth patterns of cells inside immobilization supports. FEMS Microbiol Lett 14:93–98

    Google Scholar 

  • Poncelet D, Dulieu C, Jacquot M (2000) Description of the immobilisation procedures. In: Wijffels R (ed) Immobilized cells. Springer Lab Manual, Heidelberg, pp15–30

  • Reetz M (1997) Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Adv Mater 9:943–954

    CAS  Google Scholar 

  • Ren L, Tsuru K, Hayakawa S, Osaka A (2002) Novel approach to fabricate porous gelatin-siloxane hybrids for bone tissue engineering. Biomaterials 23:4765–4773

    Article  CAS  PubMed  Google Scholar 

  • Sabra V, Zeng AP, Deckwer WD (2001) Bacterial alginate: physiology, product quality and process aspects. Appl Microbiol Biotechnol 56:315–325

    Article  CAS  PubMed  Google Scholar 

  • Sakai S, Ono, T, Ijima H, Kawakami K (2001) Synthesis and transport characterization of alginate/aminopropyl-silicate/aginate microcapsule: application to bioartificial pancreas. Biomaterials 22:2827–2834

    Article  CAS  PubMed  Google Scholar 

  • Sakai S, Ono, T, Ijima H, Kawakami K (2002a) In vitro and in vivo evaluation of alginate/sol-gel synthesized aminopropyl-silicate/alginate membrane for bioartificial pancreas. Biomaterials 23:4177–4183

    Article  CAS  PubMed  Google Scholar 

  • Sakai S, Ono, T, Ijima H, Kawakami K (2002b) Alginate/aminopropyl-silicate/aginate membrane immunoisolatability and insulin secretion of encapsulated islets. Biotechnol Prog 18:401–403

    Article  CAS  PubMed  Google Scholar 

  • Sakai S, Ono T, Ijima H, Kawakami K (2002c) Aminopropyl-silicate membrane for microcapsule-shaped bioartificial organs: control of molecular permeability. J Memb Sci 202:73–80

    Article  CAS  Google Scholar 

  • Schneider S, Feilen PJ, Slotty V, Kampfner D, Preuss S, Berger S, Beyer J, Pommersheim R (2001) Multilayer capsules: a promising microencapsulation system for transplantation of pancreatic islets. Biomaterials 22:1961–1970

    Article  CAS  PubMed  Google Scholar 

  • Sglavo VM, Carturan G, Dal Monte R, Muraca M (1999) SiO2 entrapment of animal cells. Part 1: mechanical features of sol-gel SiO2 coatings. J Mater Sci 34:3587–3590

    Article  CAS  Google Scholar 

  • Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    CAS  PubMed  Google Scholar 

  • Tamura H, Tsuruta Y, Tokura S (2002) Preparation of chitosan-coated alginate filament. Mater Sci Eng C 20:143–147

    Article  Google Scholar 

  • Uludag H, De Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42:29–64

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ (2000) Development of new polycations for cell encapsulation with alginate. Mater Sci Eng C 13:59–63

    Article  Google Scholar 

  • Willaert RG, Baron GV (1996) Gel entrapment and microencapsulation: methods, applications and engineering principles. Rev Chem Eng 12:1-205

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Coradin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coradin, T., Nassif, N. & Livage, J. Silica–alginate composites for microencapsulation. Appl Microbiol Biotechnol 61, 429–434 (2003). https://doi.org/10.1007/s00253-003-1308-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1308-5

Keywords

Navigation