Skip to main content
Log in

Deletion of scbA enhances antibiotic production in Streptomyces lividans

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Antibiotic production in many streptomycetes is influenced by extracellular γ-butyrolactone signalling molecules. In this study, the gene scbA, which had been shown previously to be involved in the synthesis of the γ-butyrolactone SCB1 in Streptomyces coelicolor A3(2), was deleted from the chromosome of Streptomyces lividans 66. Deletion of scbA eliminated the production of the antibiotic stimulatory activity previously associated with SCB1 in S. coelicolor. When the S. lividans scbA mutant was transformed with a multi-copy plasmid carrying the gene encoding the pathway-specific activator for either actinorhodin or undecylprodigiosin biosynthesis, production of the corresponding antibiotic was elevated significantly compared to the corresponding scbA + strain carrying the same plasmid. Consequently, deletion of scbA may be useful in combination with other strategies to construct host strains capable of improved bioactive metabolite production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Bierman M, Logan R, O'Brien K, Seno ET, Rao NR, Schoner B (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    CAS  PubMed  Google Scholar 

  • Bruheim P, Sletta H, Bibb MJ, White J, Levine DW (2002) High yield actinorhodin production in fed-batch culture by a Streptomyces lividans strain over-expressing the pathway-specific activator gene actII-ORF4. J Ind Microbiol Biotechnol 28:103–11

    Article  CAS  PubMed  Google Scholar 

  • Butler MJ, Bruheim P, Jovetic S, Marinelli F, Postma P, Bibb MJ (2002) Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl Env Microbiol 68:4731–4739

    Article  CAS  Google Scholar 

  • Bystrykh LV, Fernandez-Moreno MA, Herrema JK, Malpartida FM, Hopwood DA, Dijkhuizen L (1996) Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2). J.Bacteriol. 178:2238–2244

    Google Scholar 

  • Champness W (2000) Actinomycete development, antibiotic production and phylogeny: questions and challenges. In: Brun YV, Skimkets LJ (eds) Prokaryotic development. American Society for Microbiology , Washington DC, pp11–31

  • Chater KF (1990) The improving prospects for yield increase by genetic engineering in antibiotic-producing streptomycetes. Biotechnology 8:115–121

    CAS  PubMed  Google Scholar 

  • Chen G, Wang G-Y, Li X, Waters B, Davies JE (2000) Enhanced production of microbial metabolites in the presence of dimethyl sulfoxide. J Antibiotics 53:1145–1153

    CAS  Google Scholar 

  • Evans CGT, Herbet D, Tempest DW (1970) The continuous culture of microorganisms 2. Construction of a chemostat. In: JR Norris, Ribbons DW (eds) Methods in microbiology, vol 2. Academic , London, pp277–327

  • Horinouchi S, Beppu T (1982) Autoregulators. In: Vining L (ed) Genetics and biochemistry of antibiotic production. Butterworth-Heinemann, Newton, Massachusetts, pp 103–119

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

  • Kondo K, Higuchi Y, Sakuda S, Nihira T, YamadaY (1989) New virginiae butanolides from Streptomyces virginiae. J Antibiot 42:769–778

    Google Scholar 

  • Kotowska M, Pawlik K, Butler AR, Cundliffe E, Takano E, Kuczek K (2002) Type II thioesterase from Streptomyces coelicolorA3 (2). Microbiology 148:1777–83

    CAS  PubMed  Google Scholar 

  • Lombo F, Pfeifer B, Leaf T, Ou S, Kim YS, Cane DE, Licari P, Khosla CH (2001) Enhancing the atom economy of polyketide biosynthetic processes through metabolic engineering. Biotechnol Prog 17:612–617

    Article  CAS  PubMed  Google Scholar 

  • MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilising a novel integration vector. Gene 111:61–68

    PubMed  Google Scholar 

  • Minas W, Brunker P, Kallio PT, Bailey JE (1998) Improved erythromycin production in a genetically engineered industrial strain of Saccharopolyspora erythraea. Biotechnol Prog 14:51–566

    Article  Google Scholar 

  • Paget MSB, Chamberlin L, Atrih A, Foster SJ, Buttner MJ (1999) Evidence that the extracytoplasmic function sigma factor, σE, is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181:201–211

    Google Scholar 

  • Passantino R, Puglia A-M, Chater KF (1991) Additional copies of the actII regulatory gene induce actinorhodin production in pleiotropic bld mutants of Streptomyces coelicolor A3 (2).J Gen Microbiol 137:2059–2064

    CAS  Google Scholar 

  • Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla CH (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790–2

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning : a laboratory manual, 2nd edn. Cold Spring Harbor , Cold Spring Harbor, New York

    Google Scholar 

  • Stratigopoulos G, Cundliffe E (2002) Inactivation of a transcriptional repressor during empirical improvement of the tylosin producer, Streptomyces fradiae. J Ind Microbiol Biotechnol 28:219–224

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Gramajo HC, Strauch E, Andres N, White J, Bibb MJ (1992) Transcriptional regulation of theredD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3 (2). Molecular Microbiology 6:2797–2804

    CAS  PubMed  Google Scholar 

  • Takano E, Nihira T, Hara Y, Jones JJ, Gershater CJL, Yamada Y, Bibb MJ (2000) Purification and structural determination of SCB1, a γ-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J Biol Chem 275:11010–11016

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Chakraburtty R, Nihira T, Yamada Y, Bibb MJ (2001) A complex role for the γ-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3 (2). Molecular Microbiology 41:1015–1028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by European Union Cell Factory grant B104-CT96–0332 (coordinated by Dr. R. Luiten) and Human Frontiers Science Program Grant RG0330/1998-M to Mervyn Bibb and Biotechnology and Biological Sciences Research Council grant 208/P14580. We are grateful to Professor K.F. Chater for helpful discussions and comments on the manuscript. These experiments were carried out in accordance with the laws of the United Kingdom and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Butler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, M.J., Takano, E., Bruheim, P. et al. Deletion of scbA enhances antibiotic production in Streptomyces lividans . Appl Microbiol Biotechnol 61, 512–516 (2003). https://doi.org/10.1007/s00253-003-1277-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1277-8

Keywords

Navigation