Skip to main content
Log in

Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two strains of the deuteromycete Paecilomyces inflatus were isolated from compost samples consisting of municipal wastes, paper and wood chips. Lignin degradation by P. inflatus was studied following the mineralization of a synthetic 14Cβ-labeled lignin (side-chain labeled dehydrogenation polymer, DHP). Approximately 6.5% of the synthetic lignin was mineralized during solid-state cultivation of the fungus in autoclaved compost; and 15.5% was converted into water-soluble fragments. Laccase was the only ligninolytic enzyme detectable when the isolates were grown in autoclaved compost. Production of the enzyme was growth-associated and dependent on the culture conditions. The optimal pH for laccase production was between 4.5 and 5.5 and the optimal temperature was around 30 °C. Activity levels of laccase increased in the presence of low-molecular-mass aromatic compounds, such as veratryl alcohol, veratric acid, vanillin and vanillic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bollag J-M, Leonowicz A (1984) Comparative studies on extracellular fungal laccase. Appl Environ Microbiol 48:849–854

    CAS  Google Scholar 

  • Bonnen A, Anton LH, Orth AB (1994) Lignin-degrading enzymes of commercial button mushroom, Agaricus bisporus. Appl Environ Microbiol 60:960–965

    CAS  Google Scholar 

  • Chefetz B, Chen Y, Hadar Y (1998) Purification and characterization of the laccase from Chaetomium thermophilium and its role in humification. Appl Environ Microbiol 64:3175–3179

    CAS  PubMed  Google Scholar 

  • Crawford JH (1983) Composting of agriculture wastes—a review. Process Biochem 18:14–18

    Google Scholar 

  • Dekker FH, Barbosa AM (2001) The effect of aeration and veratryl alcohol on the production of two laccases by the ascomycete Botryosphaeria sp. Enzyme Microb Technol 28:81–88

    Article  CAS  PubMed  Google Scholar 

  • Eggert C, Temp U, Eriksson K-EL (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158

    CAS  PubMed  Google Scholar 

  • Eichlerova I, Homolka L, Nerud F, Zadrazil F, Baldrian P, Gabriel J (2000) Screening of Pleurotus ostreatus isolates for their ligninolytic properties during cultivation on natural substrates. Biodegradation 11:279–287

    Article  CAS  PubMed  Google Scholar 

  • Falcon MA, Rodriquez A, Carnicero A, Regalado V, Perestelo F, Milstein O, De la Fuente G, (1995) Isolation of microorganisms with lignin transformation potential from soil of Tenerife Island. Soil Biol Biochem 27:121–126

    Article  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 1. Lignin, humic substances and coal. Wiley VCH, Weinheim, pp 129–180

  • Hatakka A, Uusi-Rauva AK (1983) Degradation of 14C-labelled poplar wood lignins by selected white-rot fungi. Eur J Appl Microbiol Biotechnol 17:235–242

    CAS  Google Scholar 

  • Hatakka A, Buswell JA, Pirhonen TI, Uusi-Rauva AK (1983) Degradation of 14C-labelled lignins by white-rot fungi. In: Higuchi T, Chang H-m, Kirk TK (eds) Recent advances in lignin biodegradation research. Uni Publishers, Tokyo, pp 176–187

  • Hofrichter M, Günter T, Fritsche W (1993) Metabolism of phenol, chloro- and nitrophenols by the Penicillium strain Bi 7/2 isolated from a contaminated soil. Biodegradation 3:415–421

    CAS  Google Scholar 

  • Hofrichter M, Bublitz F, Fritsche W (1997) Fungal attack on the coal. II. Solubilization of low-rank coal by filamentous fungi. Fuel Proc Technol 52:55–64

    Article  CAS  Google Scholar 

  • Hofrichter M, Vares T, Kalsi M, Galkin S, Scheibner K, Fritsche W, Hatakka A (1999) Production of manganese peroxidase and organic acids and mineralization of 14C-labelled (14C-DHP) during solid-state fermentation of wheat straw with the white rot fungus Nematoloma frowardii. Appl Environ Microbiol 65:1864–1870

    CAS  PubMed  Google Scholar 

  • Kiiskinen L-L, Viikari L, Kruus K (2002) Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces. Appl Microbiol Biotechnol 59:198–204

    Article  CAS  PubMed  Google Scholar 

  • Lundell T, Leonowicz A, Rogalski J, Hatakka A (1990) Formation and action of lignin-modifying enzymes in cultures of Phlebia radiata supplemented with veratric acid. Appl Environ Microbiol 56:2623–2629

    CAS  Google Scholar 

  • Luterek J, Gianfreda L, Wojtas-Wasilewska M, Rogalski J, Jaszek M, Malarczyk E, Dawidowicz A, Finks-Boots M, Ginalska G, Leonowicz A (1997) Screening of the wood-rotting fungi for laccase production: induction by ferulic acid, partial purification and immobilization of laccase from the high-laccase-producing strain, Cerrena unicolor. Acta Microbiol Pol 46:297–311

    CAS  Google Scholar 

  • Lynch JM (1993) Substrate availability in the production of compost. In: Hoitink HAJ, Keener HM (eds) Science and engineering of composting. Design environmental microbiological and utilization aspects. Renaissance, Worthington, Ohio, pp 19–29

  • Regalado V, Rodriguez A, Perestelo F, Carnicero A, De la Fuente G, Falcon MA (1997) Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum. Appl Environ Microbiol 63:3716–3718

    CAS  Google Scholar 

  • Regalado V, Perestelo F, Rodriguez A, Carnicero A, Sosa FJ, De la Fuente G, Falcon MA (1999) Activated oxygen species and two extracellular enzymes: laccase and aryl-alcohol oxidase, novel for the lignin-degrading fungus Fusarium proliferatum. Appl Microbiol Biotechnol 51:388–390

    Article  Google Scholar 

  • Robles A, Lucas R, Cienfuegos GA de, Gălvez A (2000) Phenol-oxidase (laccase) activity in strains of the hyphomycete Chalara paradoxa isolated from olive mill wastewater disposal ponds. Enzyme Microb Technol 26:484–490

    CAS  PubMed  Google Scholar 

  • Rodriguez A, Perestelo F, Carnicero A, Regalado V, Perez R, De la Fuente G, Falcon MA (1996a) Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. FEMS Microbiol Ecol 21:213–219

    Article  CAS  Google Scholar 

  • Rodriquez A, Falcon MA, Carnicero A, Perestelo F, De la Fuente G, Trojanowski J (1996b) Laccase activities of Penicillium chrysogenum in relation to lignin degradation. Appl Microbiol Biotechnol 45:399–403

    Article  Google Scholar 

  • Rogalski J, Lundell T K, Leonowicz A, Hatakka A (1991a) Production of laccase, lignin peroxidase and manganese-dependent peroxidase by various strains of Trametes versicolor depending on culture conditions. Acta Microbiol Pol 40:221–234

    CAS  Google Scholar 

  • Rogalski J, Lundell TK, Leonowicz A, Hatakka A (1991b) Influence of aromatic compounds and lignin on production of ligninolytic enzymes by Phlebia radiata. Phytochemistry 30:2869–2872

    Article  CAS  Google Scholar 

  • Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralising 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457

    CAS  PubMed  Google Scholar 

  • Schlosser D, Grey R, Fritsche W (1997) Patterns of ligninolytic enzymes in Trametes versicolor. Distribution of extra- and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood. Appl Microbiol Biotechnol 47:412–418

    CAS  Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    CAS  PubMed  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    CAS  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresource Technol 72:169–183

    CAS  Google Scholar 

  • Tuomela M, Hatakka A, Raiskila S, Vikman M, Itävaara M (2001) Biodegradation of radiolabelled synthetic lignin (14C-DHP) and mechanical pulp in a compost environment. Appl Microbiol Biotechnol 55:429–499

    Article  Google Scholar 

  • Vares T, Niemenmaa O, Hatakka A (1994) Secretion of ligninolytic enzymes and mineralization of 14C-ring-labelled synthetic lignin by three Phlebia tremellosa strains. Appl Environ Microbiol 60:569–575

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Maj and Tor Nessling Foundation and by the Academy of Finland (project 39906 to A.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hatakka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kluczek-Turpeinen, B., Tuomela, M., Hatakka, A. et al. Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus . Appl Microbiol Biotechnol 61, 374–379 (2003). https://doi.org/10.1007/s00253-003-1272-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1272-0

Keywords