Skip to main content

Advertisement

Log in

Phytoremediation: an overview of metallic ion decontamination from soil

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, phytoremediation has emerged as a promising ecoremediation technology, particularly for soil and water cleanup of large volumes of contaminated sites. The exploitation of plants to remediate soils contaminated with trace elements could provide a cheap and sustainable technology for bioremediation. Many modern tools and analytical devices have provided insight into the selection and optimization of the remediation process by plant species. This review describes certain factors for the phytoremediation of metal ion decontamination and various aspects of plant metabolism during metallic decontamination. Metal-hyperaccumulating plants, desirable for heavily polluted environments, can be developed by the introduction of novel traits into high biomass plants in a transgenic approach, which is a promising strategy for the development of effective phytoremediation technology. The genetic manipulation of a phytoremediator plant needs a number of optimization processes, including mobilization of trace elements/metal ions, their uptake into the root, stem and other viable parts of the plant and their detoxification and allocation within the plant. This upcoming science is expanding as technology continues to offer new, low-cost remediation options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Andolfi L, Cannistraro S, Canters GW, Facci P, Ficca AG, Van Amsterdam IM, Verbeet MP (2002) A poplar plastocyanin mutant suitable for adsorption onto gold surface via disulfide bridge. Arch Biochem Biophys 399:81–88

    Article  CAS  PubMed  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    Article  CAS  PubMed  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baudouin C, Charveron M, Tarrouse R, Gall Y (2002) Environmental pollutants and skin cancer. Cell Biol Toxicol 18:341–348

    CAS  PubMed  Google Scholar 

  • Belouchi A, Kwan T, Gros P (1997) Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol Biol 33:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Google Scholar 

  • Burken JG, Shanks JV, Thompson PL (2000) Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, Washington, D.C., pp 239–275

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Physiol Plant Mol Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe 1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    Article  CAS  PubMed  Google Scholar 

  • De La Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    PubMed  Google Scholar 

  • Ehlke S, Kirchner C (2002) Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. J Environ Radioact 58:97–112

    Article  PubMed  Google Scholar 

  • Fiskesjo G (1988) The Allium test—an alternative in environment studies: the relative toxicity of metal ions. Mutat Res 197:243–260

    CAS  PubMed  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere N, Thibaud JB, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    CAS  PubMed  Google Scholar 

  • Grant WF (1999) Higher plant assays for the detection of chromosomal aberrations and gene mutations—a brief historical background on their use for screening and monitoring environmental chemicals. Mutat Res 426:107–112

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Biol 53:1-11

    Article  CAS  Google Scholar 

  • Heaton ACP, Rugh CL, Wang NJ, Meagher RB (1998) Phytoremediation of mercury- and methylmercury polluted soils using genetically engineered plants. J Soil Contam 7:497–507

    CAS  Google Scholar 

  • Himelblau E, Mira H, Lin SJ, Culotta VC, Penarrubia L, Amasino RM (1998) Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol 117:1227–1234

    Article  CAS  PubMed  Google Scholar 

  • Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci USA 93:8782–8786

    Article  CAS  PubMed  Google Scholar 

  • Hursthouse AS (2001) The relevance of speciation in the remediation of soils and sediments contaminated by metallic elements—an overview and examples from Central Scotland, UK. J Environ Monit 3:49–60

    Article  CAS  PubMed  Google Scholar 

  • Knasmuller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A, God R, Kundi M (1998) Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutat Res 420:37–48

    CAS  PubMed  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    CAS  PubMed  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Hohn B (2000) Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J 19:4431–4438

    CAS  PubMed  Google Scholar 

  • Krämer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672

    Article  PubMed  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • Lasat MM (2002) Phytoremediation of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    CAS  PubMed  Google Scholar 

  • Lasat MM, Fuhrnmann M, Ebbs SD, Cornish JE, Kochian LV (1998) Phytoremediation of a radiocesium contaminated soil: evaluation of cesium-137. J Environ Qual 27:165–169

    CAS  Google Scholar 

  • Li L, He Z, Pandey, G, Tsuchiya T, Luan S (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277:5360–5368

    Article  CAS  PubMed  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  Google Scholar 

  • Magnuson ML, Ketty CA, Kelty KC (2001) Trace metal loading on water-borne soil and dust particles characterized through the use of spilt-flow thin-cell fractionation. Anal Chem 73:3492–3496

    Article  CAS  PubMed  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  PubMed  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  • Pagnanelli F, Toro L, Veglio F (2002) Olive mill solid residues as heavy metal sorbent material: a preliminary study. Waste Manag 22:901–907

    Article  CAS  PubMed  Google Scholar 

  • Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    CAS  PubMed  Google Scholar 

  • Pence NS, Larson PB, Ebbs SD, Lethan DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960

    CAS  PubMed  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci USA 98:9995–10000

    Article  CAS  PubMed  Google Scholar 

  • Petrangeli PM, Majone M, Rolle E (2001) Kaolinite sorption of Cd, Ni and Cu from landfill leachates: influence of leachate composition. Water Sci Technol 44:343–350

    PubMed  Google Scholar 

  • Rea PA (1999) MRP subfamily of ABC transporters from plants and yeast. J Exp Bot 50:895–913

    CAS  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187

    Article  CAS  PubMed  Google Scholar 

  • Rugh CL, Seueoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    CAS  PubMed  Google Scholar 

  • Salt DE, Krämer V (2000) Mechanism of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 231–246

    Google Scholar 

  • Samuelsen AI, Martin RC, Mok DWS, Machteld CM (1998) Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol 118:51–58

    Article  CAS  PubMed  Google Scholar 

  • Schmoger ME, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    CAS  PubMed  Google Scholar 

  • Shaul O, Hilgemann DW, De-Almeida-Engler J, Van Montagu M, Inz D, Galili G (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J 18:3973–3980

    Article  CAS  PubMed  Google Scholar 

  • Steinkellner H, Mun-Sik K, Helma C, Ecker S, Ma TH, Horak O, Kundi M, Knasmuller S (1998) Genotoxic effects of heavy metals: comparative investigation with plant bioassays. Environ Mol Mutagen 31:183–191

    Article  CAS  PubMed  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    CAS  PubMed  Google Scholar 

  • Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276:20817–20820

    Article  CAS  PubMed  Google Scholar 

  • Whiting SN, Souza MP de, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  PubMed  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    CAS  PubMed  Google Scholar 

  • Zaal BJ van der, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 199:1047–1055

    Article  Google Scholar 

Download references

Acknowledgement

This is IMTECH communication number 014/2002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, O.V., Labana, S., Pandey, G. et al. Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61, 405–412 (2003). https://doi.org/10.1007/s00253-003-1244-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1244-4

Keywords

Navigation