Skip to main content
Log in

Identifiability and retrievability of unique parameters describing intrinsic Andrews kinetics

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A key factor contributing to the variability in the microbial kinetic parameters reported from batch assays is parameter identifiability, i.e., the ability of the mathematical routine used for parameter estimation to provide unique estimates of the individual parameter values. This work encompassed a three-part evaluation of the parameter identifiability of intrinsic kinetic parameters describing the Andrews growth model that are obtained from batch assays. First, a parameter identifiability analysis was conducted by visually inspecting the sensitivity equations for the Andrews growth model. Second, the practical retrievability of the parameters in the presence of experimental error was evaluated for the parameter estimation routine used. Third, the results of these analyses were tested using an example data set from the literature for a self-inhibitory substrate. The general trends from these analyses were consistent and indicated that it is very difficult, if not impossible, to simultaneously obtain a unique set of estimates of intrinsic kinetic parameters for the Andrews growth model using data from a single batch experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f.
Fig. 2a–c.
Fig. 3a, b.

Similar content being viewed by others

References

  • Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10:707–723

    CAS  Google Scholar 

  • Berthouex PM, Brown LC (1994) Statistics for environmental engineers. Lewis, Boca Raton, Fla.

  • Brown SC, Grady CPL Jr, Tabak HH (1990) Biodegradation kinetics of substituted phenolics: demonstration of a protocol based on electrolytic respirometry. Water Res 24:853–861

    CAS  Google Scholar 

  • Cooper SF (1989) Determination of the biodegradation kinetics of substituted phenolics from oxygen uptake data. MSc thesis, Clemson University, Clemson

  • D'Adamo PD, Rozich AF, Gaudy AF Jr (1984) Analysis of growth data with inhibitory carbon sources. Biotechnol Bioeng 26:397–402

    CAS  Google Scholar 

  • Dang JS, Harvey DM, Jobbagy A, Grady CPL Jr (1989) Evaluation of biodegradation kinetics with respirometric data. Res J Water Pollut Control Fed 61:1711–1721

    CAS  Google Scholar 

  • Edwards VH (1970) The influence of high substrate concentrations on microbial kinetics. Biotechnol Bioeng 12:679–712

    CAS  PubMed  Google Scholar 

  • Ellis TG, Barbeau DS, Smets BF, Grady CPL Jr (1996) Respirometric technique for determination of extant kinetic parameters describing biodegradation. Water Environ Res 68:917–926

    CAS  Google Scholar 

  • Grady CPL Jr, Smets BF, Barbeau DS (1996) Variability in kinetic parameter estimates: a review of possible causes and a proposed terminology. Water Res 30:742–748

    Article  CAS  Google Scholar 

  • Hill GA, Robinson CW (1975) Substrate inhibition kinetics: phenol degradation by Pseudomonas putida. Biotechnol Bioeng 17:1599–1615

    CAS  Google Scholar 

  • Kuester JL, Mize JH (1973) Optimization techniques with Fortran. McGraw-Hill, New York

  • Luong JHT (1987) Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnol Bioeng 29:242–248

    CAS  Google Scholar 

  • Magbanua BS Jr, Lu YT, Grady CPL Jr (1998) A technique for obtaining representative biokinetic parameter values from replicate sets of parameter estimates. Water Res 32:849–855

    Article  CAS  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    CAS  Google Scholar 

  • Monteiro ÁAMG, Boaventura RAR, Rodrigues AE (2000) Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. Biochem Eng J 6:45–49

    Article  CAS  PubMed  Google Scholar 

  • Pawlowsky U, Howell JA (1973) Mixed culture biooxidation of phenol. I. Determination of kinetic parameters. Biotechnol Bioeng 15:889–896

    CAS  Google Scholar 

  • Robinson JA (1985) Determining microbial kinetic parameters using nonlinear regression analysis: advantages and limitations in microbial ecology. In: Marshall KC (ed) Advances in microbial ecology, vol 8. Plenum, New York, pp 61–114

  • Robinson JA (1998) Modeling microbial processes: an overview of statistical considerations. In: Koch AL, Robinson JA, Milliken GA (eds) Mathematical modeling in microbial ecology. Chapman & Hall, New York, pp 14–31

  • Robinson JA, Tiedje JM (1983) Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve. Appl Environ Microbiol 45:1453–1458

    CAS  PubMed  Google Scholar 

  • Rozich AF, Gaudy AF Jr (1985) Response of phenol-acclimated activated sludge process to quantitative shock loading. J Water Pollut Control Fed 57:795–804

    CAS  Google Scholar 

  • Schröder M, Müller C, Posten C, Deckwer W-D, Hecht V (1997) Inhibition kinetics of phenol degradation from unstable steady-state data. Biotechnol Bioeng 54:567–576

    Article  Google Scholar 

  • Yang RD, Humphrey AE (1975) Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol Bioeng 17:1211–1235

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Seagren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seagren, E.A., Kim, H. & Smets, B.F. Identifiability and retrievability of unique parameters describing intrinsic Andrews kinetics. Appl Microbiol Biotechnol 61, 314–322 (2003). https://doi.org/10.1007/s00253-002-1220-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-002-1220-4

Keywords

Navigation