Skip to main content
Log in

Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract.

The γ- and δ-lactones of less than 12 carbons constitute a group of compounds of great interest to the flavour industry. It is possible to produce some of these lactones through biotechnology. For instance, γ-decalactone can be obtained by biotransformation of methyl ricinoleate. Among the organisms used for this bioproduction, Yarrowia lipolytica is a yeast of choice. It is well adapted to growth on hydrophobic substrates, thanks to its efficient and numerous lipases, cytochrome P450, acyl-CoA oxidases and its ability to produce biosurfactants. Furthermore, genetic tools have been developed for its study. This review deals with the production of lactones by Y. lipolytica with special emphasis on the biotransformation of methyl ricinoleate to γ-decalactone. When appropriate, information from the lipid metabolism of other yeast species is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Adams TB, Greer DB, Doull J, Munro IC, Newberne P, Portoghese PS, Smith RL, Wagner BM, Weil CS, Woods IA, Ford RA (1998) The FEMA GRAS assessment of lactones used as flavour ingredients. Food Chem Toxicol 36:249–278

    Article  CAS  PubMed  Google Scholar 

  • Aguedo M (2002) PhD thesis, ENSBANA, Université de Bourgogne, Dijon

  • Aguedo M, Waché Y, Belin J-M (2000) Biotransformation of ricinoleic acid into γ-decalactone by yeast cells: recent progress and current questions. Recent Res Dev Biotechnol Bioeng 3:167–179

    CAS  Google Scholar 

  • Aguedo M, Beney L, Waché Y, Belin J-M (2002a) Mechanism underlying the toxicity of lactone aroma compounds towards the producing yeast cells. J Appl Microbiol (in press)

  • Aguedo M, Beney L, Waché Y, Belin J-M (2002b) Interaction of an odorant lactone with model phospholipid bilayers and its strong fluidizing action in yeast membrane. Int J Food Microbiol 80:211–215

    Article  CAS  Google Scholar 

  • Aguedo M, Waché Y, Mazoyer V, Sequeira-Le Grand A, Belin JM (2003) Increased electron-donor and electron-acceptor characters enhance the adhesion between oil droplets and cells of Yarrowia lipolytica as evaluated by a new cytometric assay. J Agric Food Chem (in press)

  • Ambid C, Carle S, De Billerbeck G (1999) Method for producing and extracting aromatic compounds. Int Patent WO9954432

  • Bakhuis E, Bos P (1969) Correlation between growth of Candida lipolytica and size of droplets in the hydrocarbon containing medium. Antonie Van Leeuwenhoek 35:F47–F48

    PubMed  Google Scholar 

  • Barth G, Gaillardin C (1996) The dimorphic fungus Yarrowia lipolytica. In: Wolf K (ed) Non-conventional yeasts in biotechnology. Springer, Berlin Heidelberg New York, pp 314–388

  • Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237

    Article  CAS  PubMed  Google Scholar 

  • Beney L, Gervais P (2001) Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Appl Microbiol Biotechnol 57:34–42

    Article  CAS  PubMed  Google Scholar 

  • Berger RG, Neuhäuser K, Drawert F (1986) Biosynthesis of flavor compounds by microorganisms. 6. Odorous constituents of Polyporus durus (Basidiomycetes). Z Naturforsch 41:963–970

    CAS  Google Scholar 

  • Blin-Perrin C, Molle D, Dufossé L, Le-Quéré J-L, Viel C, Mauvais G, Feron G (2000) Metabolism of ricinoleic acid into γ-decalactone: β-oxidation and long chain acyl intermediates of ricinoleic acid in the genus Sporidiobolus sp. FEMS Microbiol Lett 188:69–74

    Article  CAS  PubMed  Google Scholar 

  • Bonnarme P, Djian A, Latrasse A, Feron G, Giniès C, Durand A, Le Quéré J-L (1997) Production of 6-pentyl-α-pyrone by Trichoderma sp. from vegetable oils. J Biotechnol 56:143–150

    Article  CAS  Google Scholar 

  • Bouchez-Naïtali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele JP (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428

    PubMed  Google Scholar 

  • Bouchez-Naïtali M, Blanchet D, Bardin V, Vandecasteele JP (2001) Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology 147:2537–2543

    PubMed  Google Scholar 

  • Brennan PJ, Lösel DM (1978) Physiology of fungal lipids: selected topics. In: Rose AH, Wilkinson JF (eds) Advances in microbial physiology, vol 17. Academic Press, London, pp 47–179

  • Cardillo R, Fronza G, Fuganti C, Grasselli P, Mele A, Pizzi D, Allegrone G, Barbeni M, Pisciotta A (1991a) Stereochemistry of the microbial generation of δ-decanolide, γ-dodecanolide, and γ-nonanolide from C18 13-hydroxy, C18 10-hydroxy, and C19 14-hydroxy unsaturated fatty acids. J Org Chem 56:5237–5239

    CAS  Google Scholar 

  • Cardillo R, Fuganti C, Barbeni M, Cabella P, Guerda PA, Allegrone G (1991b) Process for the microbiological production of γ- and δ-lactones. Eur Patent EP0412880

  • Casaregola S, Neuveglise C, Lepingle A, Bon E, Feynerol C, Artiguenave F, Wincker P, Gaillardin C (2000) Genomic exploration of the hemiascomycetous yeasts: 17. Yarrowia lipolytica. FEBS Lett 487:95–100

    Article  CAS  PubMed  Google Scholar 

  • Cirigliano MC, Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50:846–850

    CAS  Google Scholar 

  • Collins RP, Halim AF (1972) Characterization of the major aroma constituent of the fungus Trichoderma viride. J Agric Food Chem 20:437–438

    CAS  Google Scholar 

  • Dansen TB, Wirtz KW, Wanders RJ, Pap EH (2000) Peroxisomes in human fibroblasts have a basic pH. Nat Cell Biol 2:51–53

    Article  CAS  PubMed  Google Scholar 

  • Dell'Angelica EC, Stella CA, Ermàcora MA, Ramos EH, Santome JA (1992) Study on fatty acid binding by proteins in yeast. Dissimilar results in Saccharomyces cerevisiae and Yarrowia lipolytica. Comp Biochem Physiol 102B:261–265

    CAS  Google Scholar 

  • Douma AC, Veenhuis M, Harder W (1987) A proton translocating ATPase is associated with the peroxisomal membrane of yeasts In: Fahimi HD, Sies H (eds) Peroxisomes in biology and medicine, Springer, Berlin Heidelberg New York, pp 199–204

    Google Scholar 

  • Dufossé L (1993) Production de lactones par des levures appartenant au genre Sporidiobolus. PhD thesis, Université de Bourgogne, Dijon

  • Dufossé L, Latrasse A, Spinnler HE (1993) Importance des lactones dans les arômes alimentaires: structure, distribution, propriétés sensorielles. Sci Aliment 14:17–50

    Google Scholar 

  • Dufossé L, Feron G, Latrasse A, Guichard E, Spinnler HE (1997) Chirality of the γ-lactones produced by Sporidiobolus salmonicolor grown in two different media. Chirality 9:667–671

    Article  PubMed  Google Scholar 

  • Dufossé L, Souchon I, Feron G, Latrasse A, Spinnler HE, (1999) In situ detoxification of the fermentation medium during γ-decalactone production with the yeast Sporidiobolus salmonicolor. Biotechnol Prog 15:135–139

    Article  PubMed  Google Scholar 

  • Elgersma Y, Roermund CW van, Wanders RJ, Tabak HF (1995) Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J 14:3472–3479

    CAS  PubMed  Google Scholar 

  • Endrizzi A, Belin J-M (1995) Bioconversion of methyl ricinoleate to 4-hydroxy-decanoic acid and to γ-decalactone by yeasts of the genus Candida. J Basic Microbiol 35:285–292

    CAS  PubMed  Google Scholar 

  • Endrizzi A, Awadé AC, Belin J-M (1993) Presumptive involvement of methyl ricinoleate β-oxidation in the production of γ-decalactone by the yeast Pichia guilliermondii. FEMS Microbiol Lett 114:153–160

    Article  CAS  Google Scholar 

  • Endrizzi A, Pagot Y, Le Clainche A, Nicaud J-M, Belin J-M (1996) Production of lactones and peroxisomal β-oxidation in yeasts. Crit Rev Biotechnol 16:301–329

    CAS  PubMed  Google Scholar 

  • Endrizzi-Joran A (1994) PhD thesis, ENSBANA, Université de Bourgogne, Dijon

  • Ercoli B, Fuganti C, Grasselli P, Servi S, Allegrone G, Barbeni M (1992) Stereochemistry of the biogeneration of C-10 and C-12 γ-lactones in Yarrowia lipolytica and Pichia ohmeri. Biotechnol Lett 14:665–668

    CAS  Google Scholar 

  • Fabritius D, Schäfer H-J, Steinbüchel A (1998) Bioconversion of sunflower oil, rapeseed oil and ricinoleic acid by Candida tropicalis M25. Appl Microbiol Biotechnol 50:573–578

    Article  CAS  Google Scholar 

  • Fantin G, Fogagnolo M, Guerrini A, Medici A, Pedrini P, Fontana S (2001) Enantioselective hydrolyses with Yarrowia lipolytica: a versatile strain for esters, enol esters, epoxides, and lactones. Tetrahedron 12:2709–2713

    Article  CAS  Google Scholar 

  • Farbood MI, Willis BJ (1983) Production of γ-decalactone. Int Patent WO8301072

  • Farbood MI, Morris JA, Sprecker MA, Bienkowski LJ, Miller KP, Vork MH, Hagedorn ML (1990) Process for preparing compositions containing unsaturated lactones, products produced thereby and organoleptic uses of said products. Eur Patent EP0354000

  • Farbood MI, Morris JA, McLean LB (1994) Fermentation process for preparing 10-hydroxy-C18-carboxylic acid and γ-dodecalactone derivatives. Eur Patent EP0578388

  • Feron G, Dufossé L, Pierard E, Bonnarme P, Le Quéré J-L, Spinnler HE (1996) Production, identification, and toxicity of γ-decalactone and 4-hydroxydecanoic acid from Sporidiobolus spp. Appl Environ Microbiol 62:2826–2831

    CAS  Google Scholar 

  • Feron G, Dufossé L, Mauvais G, Bonnarme P, Spinnler HE (1997) Fatty acid accumulation in the yeast Sporidiobolus salmonicolor during batch production of γ-decalactone. FEMS Microbiol Lett 149:17–24

    Article  CAS  PubMed  Google Scholar 

  • Fishbein W, Bessman S (1966) Purification and properties of an enzyme in human blood and rat liver microsomes catalyzing the formation and hydrolysis of γ-lactones. I. Tissue location, stoichiometry, specificity, distinction from esterase. J Biol Chem 241:4835–4841

    CAS  PubMed  Google Scholar 

  • Fuganti C, Servi S, Barbeni M, Cabella P (1993) New avenues in natural products: strategies in the biogeneration of flavors In: Attar-ur-Rahman (ed) Studies in natural products chemistry. Elsevier, Amsterdam, pp 295–345

    Google Scholar 

  • Gatfield IL (1999) Biotechnological production of natural flavor materials In: Teranishi R, Wick EL, Hornstein I (eds) Flavor chemistry, thirty years of progress. Kluwer, New York, pp 211–227

    Google Scholar 

  • Gatfield IL, Güntert M, Sommer H, Werkhoff P (1993) Some aspects of the microbiological production of flavor-active lactones with particular reference to γ-decalactone. Chem Mikrobiol Technol Lebensm 15:165–170

    CAS  Google Scholar 

  • Gill CO, Hall MG, Ratledge C (1977) Lipid accumulation in an oleaginous yeast (Candida 107) growing in glucose in single state continuous culture. Appl Environ Microbiol 33:231–239

    CAS  PubMed  Google Scholar 

  • Gurvitz A, Mursula AM, Yagi AI, Hartig A, Ruis H, Rottensteiner H, Hiltunen JK (1999) Alternatives to the isomerase dependent pathway for the β-oxidation of oleic acid are dispensable in Saccharomyces cerevisiae. J Biol Chem 274:24514–24521

    Article  CAS  PubMed  Google Scholar 

  • Haffner T, Tressl R (1996) Biosynthesis of (R)-γ-decanolactone in the yeast Sporobolomyces odorus. J Agric Food Chem 44:1218–1223

    Article  CAS  Google Scholar 

  • Hosaka K, Mishina M, Tanaka T, Kamiryo T, Numa S (1979) Acyl-coenzyme-A synthetase I from Candida lipolytica. Purification, properties and immunochemical studies. Eur J Biochem 93:197–203

    CAS  PubMed  Google Scholar 

  • Iacazio G, Martini D, Faure B, N'Guyen MH (2002) Isolation and characterisation of 8-hydroxy-3Z,5Z-tetradecadienoic acid, a putative intermediate in Pichia guilliermondii γ-decalactone biosynthesis from ricinoleic acid. FEMS Microbiol Lett 209:55–60

    Article  Google Scholar 

  • Kalish JE, Chen CI, Gould SJ, Watkins PA (1995) Peroxisomal activation of long- and very long-chain fatty acids in the yeast Pichia pastoris. Biochem Biophys Res Commun 206:335–340

    Article  CAS  PubMed  Google Scholar 

  • Knudsen J, Faergeman NJ, Skott H, Hummel R, Borsting C, Rose TM, Andersen JS, Hojrup P, Roepstorff P, Kristiansen K (1994) Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size. Biochem J 302:479–485

    CAS  PubMed  Google Scholar 

  • Knudsen J, Jensen MV, Hansen JK, Faergeman NJ, Neergaard TB, Gaigg B (1999) Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling. Mol Cell Biochem 192:95–103

    Article  CAS  PubMed  Google Scholar 

  • Kohlwein SD, Paltauf F (1983) Uptake of fatty acids by the yeasts, Saccharomyces uvarum and Saccharomycopsis lipolytica. Biochim Biophys Acta 792:310–317

    Google Scholar 

  • Lange H, Garbe LA (2000) Yeast α-oxidation enzymes, used to degrade organic compounds by one carbon atom, used to convert 5-hydroxydecanoic acid to γ-nonalactone. Ger Patent DE19929577

  • Latrasse A, Guichard E, Piffaut C, Fournier N, Dufossé L (1993) Chirality of the γ-lactones formed by Fusarium poae INRA 45. Chirality 5:379–384

    CAS  PubMed  Google Scholar 

  • Lee S-L, Cheng H-Y, Chen W-C, Chou C-C (1999) Effect of physical factors on the production of γ-decalactone by immobilized cells of Sporidiobolus salmonicolor. Proc Biochem 34:845–850

    Article  CAS  Google Scholar 

  • Luo YS, Wang HJ, Gopalan KV, Srivastava DK, Nicaud JM, Chardot T (2000) Purification and characterization of the recombinant form of acyl-CoA oxidase 3 from the yeast Yarrowia lipolytica. Arch Biochem Biophys 384:1–8

    Article  CAS  PubMed  Google Scholar 

  • Maga JA (1976) Lactones in food. Crit Rev Food Sci Nutr 8:1–56

    CAS  Google Scholar 

  • Mandrup S, Jepsen R, Skott H, Rosendal J, Hojrup P, Kristiansen K, Knudsen J (1993) Effect of heterologous expression of acyl-CoA-binding protein on acyl-CoA level and composition in yeast. Biochem J 290:369–374

    CAS  PubMed  Google Scholar 

  • Medvedeva G, Meissel M, Volkova T (1969) Permeation of oleic acid into the yeast cell (a cytological study). Antonie van Leeuwenhoek 35:B27–B28

    PubMed  Google Scholar 

  • Meisel MN, Medvedeva GA, Kozlova TM (1976) Cytological mechanisms of the assimilation of n-alkanes by yeast. Mikrobiologiya 45:844–851

    CAS  Google Scholar 

  • Meisel MN, Kozlova TM, Medvedeva GA, Novichkova AT, Pomoshchnikova NA, Seliverstova LA (1977) Yeast peroxisomes, their development and functioning. Mikrobiologiya 46:835–845

    CAS  Google Scholar 

  • Meyer J (1993) γ-Decalactone microbial production from alkyl ricinoleate by hydrolysis, β-oxidation, and chemical cyclisation of 4-hydroxy decanoic acid produced for flavouring and perfume. Ger Patent DE4126997

  • Mogensen IB, Schulenberg H, Hansen HO, Spener F, Knudsen J (1987) A novel acyl-CoA-binding protein from bovine liver. Effect on fatty acid synthesis. Biochem J 241:189–192

    CAS  PubMed  Google Scholar 

  • Nago H, Matsumoto M, Nakai S (1993) 2-Deceno-δ-lactone- producing fungi, strains of Fusarium solani, isolated by using medium containing decano-δ-lactone as the sole carbon source. Biosci Biotechnol Biochem 57:2107–2110

    CAS  Google Scholar 

  • Nicaud J-M, Belin J-M, Pagot Y, Endrizzi-Joran A (1996) Bio-conversion of substrate with microbe auxotrophic for compound in medium deficient in this compound. Fr Patent FR2734843

  • Nicolay K, Veenhuis M, Douma AC, Harder W (1987) A 31P NMR study of the internal pH of yeast peroxisomes. Arch Microbiol 147:37–41

    CAS  PubMed  Google Scholar 

  • Okui S, Uchiyama M, Mizugaki M (1963a) Metabolism of hydroxy fatty acids. I. Metabolic conversion of ricinoleic acid by a certain microorganism to 8-d-(+)-hydroxy tetradec-cis-5-enoic acid. J Biochem (Tokyo) 53:265–270

    Google Scholar 

  • Okui S, Uchiyama M, Mizugaki M (1963b) Metabolism of hydroxy fatty acids. II. Intermediates of the oxidative breakdown of ricinoleic acid by genus Candida. J Biochem (Tokyo) 54:536–540

    Google Scholar 

  • Okui S, Uchiyama M, Mizugaki M, Sugawara A (1963c) Characterization of hydroxy acids in depot fat after feeding of ricinoleic acid. Biochim Biophys Acta 70:344–346

    Google Scholar 

  • Osumi M, Fukuzumi F, Yamada N, Nagatani T, Teranishi Y, Tanaka A, Fukui S (1975) Surface structure of some Candida yeast cells grown on n-alkanes. J Ferment Technol 53:244–248

    Google Scholar 

  • Pagot Y (1997) PhD thesis, ENSBANA, Université de Bourgogne, Dijon

  • Pagot Y, Belin J-M (1996a) Fatty acid cellular metabolism and lactone production by the yeast Pichia guilliermondii. Appl Microbiol Biotechnol 45:349–354

    Article  CAS  Google Scholar 

  • Pagot Y, Belin J-M (1996b) Involvement of carnitine acyltransferases in peroxisomal fatty acid metabolism by the yeast Pichia guilliermondii. Appl Environ Microbiol 42:3864–3867

    Google Scholar 

  • Pagot Y, Le Clainche A, Nicaud J-M, Waché Y, Belin J-M (1998) Peroxisomal β-oxidation activities and γ-decalactone production by the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 49:295–300

    Article  CAS  PubMed  Google Scholar 

  • Palmieri L, Rottensteiner H, Girzalsky W, Scarcia P, Palmieri F, Erdmann R (2001) Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO J 20:5049–5059

    Article  CAS  PubMed  Google Scholar 

  • Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic engineering of Candida tropicalis for the production of long chain dicarboxylic acids. Bio/Technology 10:894–898

    CAS  PubMed  Google Scholar 

  • Pignède G, Wang H, Fudalej F, Seman M, Gaillardin C, Nicaud J-M (2000a) Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol 66:3283–3289

    Article  PubMed  Google Scholar 

  • Pignède G, Wang H, Fudalej F, Gaillardin C, Seman M, Nicaud J-M (2000b) Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol 182:2802–2810

    Article  PubMed  Google Scholar 

  • Prokop A, Ludvik M, Erickson LE (1972) Growth models of cultures with two liquid phases. VIII. Experimental observations on droplet size and interfacial area. Biotechnol Bioeng 14:587–608

    CAS  PubMed  Google Scholar 

  • Rabenhorst J, Gatfield I (2000) Process for the production of γ-decalactone. Int Patent WO0024920

  • Sarris J, Latrasse A (1985) Production of odoriferous γ-lactones by Fusarium poae. Agric Biol Chem 49:3227–3230

    CAS  Google Scholar 

  • Schjerling CK, Hummel R, Hansen JK, Borsting C, Mikkelsen JM, Kristiansen K, Knudsen J (1996) Disruption of the gene encoding the acyl-CoA-binding protein (ACB1) perturbs acyl-CoA metabolism in Saccharomyces cerevisiae. J Biol Chem 271:22514–22521

    Article  CAS  PubMed  Google Scholar 

  • Scholz H, Kohlwein SD, Paltauf F, Lezius A, Spener F (1990) Expression of a functionally active cardiac fatty acid-binding protein in the yeast Saccharomyces cerevisiae. Mol Cell Biochem 98:69–74

    CAS  PubMed  Google Scholar 

  • Smaczynska I, Skoneczny M, Kurlandzska A (1994) Studies on the effect of an heterologous fatty acid-binding protein on acyl-CoA oxidase induction in Saccharomyces cerevisiae. Biochem J 301:615–620

    CAS  PubMed  Google Scholar 

  • Souchon I, Spinnler HE, Dufossé L, Voilley A (1998) Trapping of γ-decalactone by adsorption on hydrophobic sorbents: application to the bioconversion of methyl ricinoleate by the yeast Sporidiobolus salmonicolor Biotechnol Tech 12:109–113

    Article  CAS  Google Scholar 

  • Spinnler HE, Giniès C, Khan JA, Vulfson EN (1996) Analysis of metabolic pathways by the growth of cells in the presence of organic solvents. Proc Natl Acad Sci USA 93:3373–3376

    Article  CAS  PubMed  Google Scholar 

  • Tahara S, Fujiwara K, Ishizaka H, Mizutani J, Obata Y (1972) γ-Decalactone one of the constituents in cultured broth of Sporobolomyces odorus. Agric Biol Chem 36:2585–2587

    CAS  Google Scholar 

  • Tanaka A, Fukui S (1989) Metabolism of n-alkanes In: Rose AH, Harrison JS (eds) The yeasts, vol 3. Academic Press, London, pp 261–287

    Google Scholar 

  • Tang CS, Jennings WG (1968) Lactonic compounds of apricot. J Agric Food Chem 16:252–254

    CAS  Google Scholar 

  • Titorenko VI, Nicaud JM, Wang H, Chan H, Rachubinski RA (2002) Acyl-CoA oxidase is imported as a heteropentameric, cofactor-containing complex into peroxisomes of Yarrowia lipolytica. J Cell Biol 156:481–494

    Article  CAS  PubMed  Google Scholar 

  • Uchimaya M, Sato R, Mizugaki M (1963) Characterization of hydroxy acids in depot fat after feeding of ricinoleic acid. Biochim Biophys Acta 70:344

    Google Scholar 

  • Van Roermund CW, Elgersma Y, Singh N, Wanders RJ, Tabak HF (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14:3480–3486

    PubMed  Google Scholar 

  • Van Roermund CW, Drissen R, Van Den Berg M, Ijlst L, Hettema EH, Tabak HF, Waterham HR, Wanders RJ (2001) Identification of a peroxisomal ATP carrier required for medium-chain fatty acid β-oxidation and normal peroxisome proliferation in Saccharomyces cerevisiae. Mol Cell Biol 21:4321–4329

    Article  PubMed  Google Scholar 

  • Van Veldhoven PP, Just WW, Mannaerts GP (1987) Permeability of the peroxisomal membrane to cofactors of β-oxidation. Evidence for the presence of a pore-forming protein. J Biol Chem 262:4310–4318

    PubMed  Google Scholar 

  • Voet D, Voet J (1990) Biochemistry. Wiley, New York

  • Waché Y, Pagot Y, Nicaud J-M, Belin J-M (1998) Acyl-CoA oxidase, a key step for lactone production by Yarrowia lipolytica. J Mol Catal B Enzym 149:165–169

    Article  Google Scholar 

  • Waché Y, Laroche C, Bergmark K, Møller-Andersen C, Aguedo M, Le Dall M-T, Wang H, Nicaud J-M, Belin J-M (2000a) Involvement of acyl-CoA oxidase isozymes in biotransformation of methyl ricinoleate into γ-decalactone by Yarrowia lipolytica. Appl Environ Microbiol 66:1233–1236

    Article  PubMed  Google Scholar 

  • Waché Y, Bergmark K, Courthaudon J-L, Aguedo M, Nicaud J-M, Belin J-M (2000b) Medium-size droplets of methyl ricinoleate are reduced by cell-surface activity in the γ-decalactone production by Yarrowia lipolytica. Lett Appl Microbiol 30:183–187

    Article  PubMed  Google Scholar 

  • Waché Y, Aguedo M, Choquet A, Gatfield I, Nicaud J-M, Belin J-M (2001) Role of β-oxidation enzymes in the production of γ-decalactones from methyl ricinoleate. Appl Environ Microbiol 67:5700–5704

    Article  PubMed  Google Scholar 

  • Waché Y, Aguedo M, LeDall M-T, Nicaud J-M, Belin J-M (2002) Optimization of Yarrowia lipolytica's β-oxidation pathway for lactones production. J Mol Catal B Enzym 153:347–351

    Article  Google Scholar 

  • Wang H, Le Clainche A, Le Dall M-T, Waché Y, Pagot Y, Belin J-M, Gaillardin J-C, Nicaud J-M (1998) Cloning and characterization of the peroxisomal acyl CoA oxidase ACO3 gene from the alkane-utilizing yeast Yarrowia lipolytica. Yeast 14:1373–1386

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Le Dall M-T, Waché Y, Laroche C, Belin J-M, Gaillardin J-C, Nicaud J-M (1999a) Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n-alkane-assimilating yeast Yarrowia lipolytica. J Bacteriol 181:5140–5148

    CAS  PubMed  Google Scholar 

  • Wang H, Le Dall M-T, Waché Y, Laroche C, Belin J-M, Gaillardin J-C, Nicaud J-M (1999b) Cloning, sequencing, and characterization of five genes coding for acyl-CoA oxidase isozymes in the yeast Yarrowia lipolytica. Cell Biochem Biophys 31:165–174

    CAS  PubMed  Google Scholar 

  • Wang X-D, Mauvais G, Cachon R, Diviès C, Feron G (2000) Addition of reducing agent dithiothreitol improves 4-decanolide synthesis by the genus Sporidiobolus. J Biosci Bioeng 90:338–340

    Article  CAS  Google Scholar 

  • Watkins PA, Lu JF, Steinberg SJ, Gould SJ, Smith KD, Braiterman LT (1998) Disruption of the Saccharomyces cerevisiae FAT1 gene decreases very long-chain fatty acyl-CoA synthetase activity and elevates intracellular very long-chain fatty acid concentrations. J Biol Chem 273:18210–18219

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Waché.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waché, Y., Aguedo, M., Nicaud, JM. et al. Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica . Appl Microbiol Biotechnol 61, 393–404 (2003). https://doi.org/10.1007/s00253-002-1207-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-002-1207-1

Keywords

Navigation