Skip to main content

Advertisement

Log in

Evidence of genetic epistasis in autoimmune diabetes susceptibility revealed by mouse congenic sublines

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Susceptibility to autoimmune diabetes is a complex genetic trait. Linkage analyses exploiting the NOD mouse, which spontaneously develops autoimmune diabetes, have proved to be a useful tool for the characterization of some of these traits. In a linkage analysis using 3A9 TCR transgenic mice on both B10.BR and NOD.H2k backgrounds, we previously determined that both the Idd2 and Idd13 loci were linked to the proportion of immunoregulatory CD4-CD8- double negative (DN) T cells. In addition to Idd2 and Idd13, five other loci showed weak linkage to the proportion of DN T cells. Of interest, in an interim analysis, a locus on chromosome 12 is linked to DN T cell proportion in both the spleen and the lymph nodes. To determine the impact of this locus on DN T cells, we generated two congenic sublines, which we named Chr12P and Chr12D for proximal and distal, respectively. While 3A9 TCR:insHEL NOD.H2k-Chr12D mice were protected from diabetes, 3A9 TCR:insHEL NOD.H2k-Chr12P showed an increase in diabetes incidence. Yet, the proportion of DN T cells was similar to the parental 3A9 TCR NOD.H2k strain for both of these congenic sublines. A genome-wide two dimensional LOD score analysis reveals genetic epistasis between chromosome 12 and the Idd13 locus. Altogether, this study identified further complex genetic interactions in defining the proportion of DN T cells, along with evidence of genetic epistasis within a locus on chromosome 12 influencing autoimmune susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Allen PM, Matsueda GR, Evans RJ, Dunbar JB Jr, Marshall GR, Unanue ER (1987) Identification of the T-cell and Ia contact residues of a T-cell antigenic epitope. Nature 327:713–5

    Article  CAS  PubMed  Google Scholar 

  • Anderson MS, Bluestone JA (2005) THE NOD MOUSE: a model of immune dysregulation. Annu Rev Immunol 23:447–85

    Article  CAS  PubMed  Google Scholar 

  • Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–25

    Article  CAS  PubMed  Google Scholar 

  • Chen YG, Mathews CE, Driver JP (2018) The role of NOD mice in type 1 diabetes research: lessons from the past and recommendations for the future. Front Endocrinol (Lausanne) 9:51

    Article  CAS  Google Scholar 

  • Chen YG, Scheuplein F, Osborne MA, Tsaih SW, Chapman HD, Serreze DV (2008) Idd9/11 genetic locus regulates diabetogenic activity of CD4 T-cells in nonobese diabetic (NOD) mice. Diabetes 57:3273–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collin R, Doyon K, Mullins-Dansereau V, Karam M, Chabot-Roy G, Hillhouse EE, Orthwein A, Lesage S (2018) Genetic interaction between two insulin-dependent diabetes susceptibility loci, Idd2 and Idd13, in determining immunoregulatory DN T cell proportion. Immunogenetics 70:495–509

    Article  CAS  PubMed  Google Scholar 

  • Collin R, Dugas V, Chabot-Roy G, Salem D, Zahn A, Di Noia JM, Rauch J, Lesage S (2015) Autoimmunity and antibody affinity maturation are modulated by genetic variants on mouse chromosome 12. J Autoimmun 58:90–9

    Article  CAS  PubMed  Google Scholar 

  • Collin R, Dugas V, Pelletier AN, Chabot-Roy G, Lesage S (2014) The mouse Idd2 locus is linked to the proportion of immunoregulatory double-negative T cells, a trait associated with autoimmune diabetes resistance. J Immunol 193:3503–12

    Article  CAS  PubMed  Google Scholar 

  • Driver JP, Serreze DV, Chen YG (2011) Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 33:67–87

    Article  CAS  PubMed  Google Scholar 

  • Dugas V, Beauchamp C, Chabot-Roy G, Hillhouse EE, Lesage S (2010) Implication of the CD47 pathway in autoimmune diabetes. J Autoimmun 35:23–32

    Article  CAS  PubMed  Google Scholar 

  • Dugas V, Liston A, Hillhouse EE, Collin R, Chabot-Roy G, Pelletier AN, Beauchamp C, Hardy K, Lesage S (2014) Idd13 is involved in determining immunoregulatory DN T-cell number in NOD mice. Genes Immun 15:82–7

    Article  CAS  PubMed  Google Scholar 

  • Duncan B, Nazarov-Stoica C, Surls J, Kehl M, Bona C, Casares S, Brumeanu TD (2010) Double negative (CD3+ 4- 8-) TCR alphabeta splenic cells from young NOD mice provide long-lasting protection against type 1 diabetes. PLoS One 5:e11427

    Article  PubMed  PubMed Central  Google Scholar 

  • Esteban LM, Tsoutsman T, Jordan MA, Roach D, Poulton LD, Brooks A, Naidenko OV, Sidobre S, Godfrey DI, Baxter AG (2003) Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J Immunol 171:2873–8

    Article  CAS  PubMed  Google Scholar 

  • Esterhazy D, Canesso MCC, Mesin L, Muller PA, de Castro TBR, Lockhart A, ElJalby M, Faria AMC, Mucida D (2019) Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature 569:126–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, Shoresh N, Whitton H, Ryan RJ, Shishkin AA, Hatan M, Carrasco-Alfonso MJ, Mayer D, Luckey CJ, Patsopoulos NA, De Jager PL, Kuchroo VK, Epstein CB, Daly MJ, Hafler DA, Bernstein BE (2015) Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:337–43

    Article  CAS  PubMed  Google Scholar 

  • Ford MS, Chen W, Wong S, Li C, Vanama R, Elford AR, Asa SL, Ohashi PS, Zhang L (2007) Peptide-activated double-negative T cells can prevent autoimmune type-1 diabetes development. Eur J Immunol 37:2234–41

    Article  CAS  PubMed  Google Scholar 

  • Fox CJ, Paterson AD, Mortin-Toth SM, Danska JS (2000) Two genetic loci regulate T cell-dependent islet inflammation and drive autoimmune diabetes pathogenesis. Am J Hum Genet 67:67–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton-Williams EE, Bergot AS, Reeves PL, Steptoe RJ (2016) Maintenance of peripheral tolerance to islet antigens. J Autoimmun 72:118–25

    Article  CAS  PubMed  Google Scholar 

  • Hamilton-Williams EE, Rainbow DB, Cheung J, Christensen M, Lyons PA, Peterson LB, Steward CA, Sherman LA, Wicker LS (2013) Fine mapping of type 1 diabetes regions Idd9.1 and Idd9.2 reveals genetic complexity. Mamm Genome 24:358–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill NJ, Lyons PA, Armitage N, Todd JA, Wicker LS, Peterson LB (2000) NOD Idd5 locus controls insulitis and diabetes and overlaps the orthologous CTLA4/IDDM12 and NRAMP1 loci in humans. Diabetes 49:1744–7

    Article  CAS  PubMed  Google Scholar 

  • Hillhouse EE, Beauchamp C, Chabot-Roy G, Dugas V, Lesage S (2010) Interleukin-10 limits the expansion of immunoregulatory CD4-CD8- T cells in autoimmune-prone non-obese diabetic mice. Immunol Cell Biol 88:771–80

    Article  CAS  PubMed  Google Scholar 

  • Hillhouse EE, Delisle JS, Lesage S (2013) Immunoregulatory CD4(-)CD8(-) T cells as a potential therapeutic tool for transplantation, autoimmunity, and cancer. Front Immunol 4:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillhouse EE, Lesage S (2013) A comprehensive review of the phenotype and function of antigen-specific immunoregulatory double negative T cells. J Autoimmun 40:58–65

    Article  CAS  PubMed  Google Scholar 

  • Hillhouse EE, Liston A, Collin R, Desautels E, Goodnow CC, Lesage S (2016) TCR transgenic mice reveal the impact of type 1 diabetes loci on early and late disease checkpoints. Immunol Cell Biol 94:709–13

    Article  CAS  PubMed  Google Scholar 

  • Hollis-Moffatt JE, Hook SM, Merriman TR (2005) Colocalization of mouse autoimmune diabetes loci Idd21.1 and Idd21.2 with IDDM6 (human) and Iddm3 (rat). Diabetes 54:2820–5

    Article  CAS  PubMed  Google Scholar 

  • Hunter K, Rainbow D, Plagnol V, Todd JA, Peterson LB, Wicker LS (2007) Interactions between Idd5.1/Ctla4 and Other Type 1 Diabetes Genes. J Immunol 179:8341–9

    Article  CAS  PubMed  Google Scholar 

  • Juvet SC, Zhang L (2012) Double negative regulatory T cells in transplantation and autoimmunity: recent progress and future directions. J Mol Cell Biol 4:48–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kachapati K, Adams DE, Wu Y, Steward CA, Rainbow DB, Wicker LS, Mittler RS, Ridgway WM (2012) The B10 Idd9.3 locus mediates accumulation of functionally superior CD137(+) regulatory T cells in the nonobese diabetic type 1 diabetes model. J Immunol 189:5001–15

    Article  CAS  PubMed  Google Scholar 

  • Keller MP, Rabaglia ME, Schueler KL, Stapleton DS, Gatti DM, Vincent M, Mitok KA, Wang Z, Ishimura T, Simonett SP, Emfinger CH, Das R, Beck T, Kendziorski C, Broman KW, Yandell BS, Churchill GA, Attie AD (2019) Gene loci associated with insulin secretion in islets from non-diabetic mice. J Clin Invest 130:4419–4432

    Article  Google Scholar 

  • Lesage S, Hartley SB, Akkaraju S, Wilson J, Townsend M, Goodnow CC (2002) Failure to censor forbidden clones of CD4 T cells in autoimmune diabetes. J Exp Med 196:1175–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liston A, Lesage S, Gray DH, O’Reilly LA, Strasser A, Fahrer AM, Boyd RL, Wilson J, Baxter AG, Gallo EM, Crabtree GR, Peng K, Wilson SR, Goodnow CC (2004) Generalized resistance to thymic deletion in the NOD mouse: a polygenic trait characterized by defective induction of Bim. Immunity 21:817–30

    CAS  PubMed  Google Scholar 

  • Liu T, Cong M, Sun G, Wang P, Tian Y, Shi W, Li X, You H, Zhang D (2016) Combination of double negative T cells and anti-thymocyte serum reverses type 1 diabetes in NOD mice. J Transl Med 14:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Maier LM, Wicker LS (2005) Genetic susceptibility to type 1 diabetes. Curr Opin Immunol 17:601–8

    Article  CAS  PubMed  Google Scholar 

  • Martina MN, Noel S, Saxena A, Rabb H, Hamad AR (2015) Double Negative (DN) alphabeta T Cells: misperception and overdue recognition. Immunol Cell Biol 93:305–310

    Article  CAS  PubMed  Google Scholar 

  • Morin J, Boitard C, Vallois D, Avner P, Rogner UC (2006) Mapping of the murine type 1 diabetes locus Idd20 by genetic interaction. Mamm Genome 17:1105–12

    Article  CAS  PubMed  Google Scholar 

  • Mullen Y (2017) Development of the nonobese diabetic mouse and contribution of animal models for understanding type 1 diabetes. Pancreas 46:455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orban T, Sosenko JM, Cuthbertson D, Krischer JP, Skyler JS, Jackson R, Yu L, Palmer JP, Schatz D, Eisenbarth G, Diabetes Prevention Trial-Type 1 Study G (2009) Pancreatic islet autoantibodies as predictors of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 32:2269–2274

  • Podolin PL, Pressey A, DeLarato NH, Fischer PA, Peterson LB, Wicker LS (1993) I-E+ nonobese diabetic mice develop insulitis and diabetes. J Exp Med 178:793–803

    Article  CAS  PubMed  Google Scholar 

  • Polychronakos C, Li Q (2011) Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet 12:781–92

    Article  CAS  PubMed  Google Scholar 

  • Ridgway WM, Peterson LB, Todd JA, Rainbow DB, Healy B, Burren OS, Wicker LS (2008) Gene-gene interactions in the NOD mouse model of type 1 diabetes. Adv Immunol 100:151–75

    Article  PubMed  Google Scholar 

  • Rigby RJ, Rozzo SJ, Boyle JJ, Lewis M, Kotzin BL, Vyse TJ (2004) New loci from New Zealand Black and New Zealand White mice on chromosomes 4 and 12 contribute to lupus-like disease in the context of BALB/c. J Immunol 172:4609–17

    Article  CAS  PubMed  Google Scholar 

  • Rogner UC, Boitard C, Morin J, Melanitou E, Avner P (2001) Three loci on mouse chromosome 6 influence onset and final incidence of type I diabetes in NOD.C3H congenic strains. Genomics 74:163–71

    Article  CAS  PubMed  Google Scholar 

  • Sgouroudis E, Albanese A, Piccirillo CA (2008) Impact of protective IL-2 allelic variants on CD4+ Foxp3+ regulatory T cell function in situ and resistance to autoimmune diabetes in NOD mice. J Immunol 181:6283–92

    Article  CAS  PubMed  Google Scholar 

  • Silva DG, Daley SR, Hogan J, Lee SK, Teh CE, Hu DY, Lam KP, Goodnow CC, Vinuesa CG (2011) Anti-islet autoantibodies trigger autoimmune diabetes in the presence of an increased frequency of islet-reactive CD4 T cells. Diabetes 60:2102–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steck AK, Johnson K, Barriga KJ, Miao D, Yu L, Hutton JC, Eisenbarth GS, Rewers MJ (2011) Age of islet autoantibody appearance and mean levels of insulin, but not GAD or IA-2 autoantibodies, predict age of diagnosis of type 1 diabetes: diabetes autoimmunity study in the young. Diabetes Care 34:1397–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Tellier J, van Meerwijk JP, Romagnoli P (2006) An MHC-linked locus modulates thymic differentiation of CD4+CD25+Foxp3+ regulatory T lymphocytes. Int Immunol 18:1509–19

    Article  CAS  PubMed  Google Scholar 

  • Theofilopoulos AN, Kono DH, Baccala R (2017) The multiple pathways to autoimmunity. Nat Immunol 18:716–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson CA, McCoy KD (2019) Not all lymph nodes are created equal. Immunity 51:12–14

    Article  CAS  PubMed  Google Scholar 

  • Tsaih SW, Khaja S, Ciecko AE, MacKinney E, Chen YG (2013) Genetic control of murine invariant natural killer T cells maps to multiple type 1 diabetes regions. Genes Immun 14:380–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Elso CM, Mackin L, Mannering SI, Strugnell RA, Wijburg OL, Brodnicki TC (2014) Congenic mice reveal genetic epistasis and overlapping disease loci for autoimmune diabetes and listeriosis. Immunogenetics 66:501–6

    Article  CAS  PubMed  Google Scholar 

  • Wicker LS, Todd JA, Peterson LB (1995) Genetic control of autoimmune diabetes in the NOD mouse. Annu Rev Immunol 13:179–200

    Article  CAS  PubMed  Google Scholar 

  • Yamanouchi J, Rainbow D, Serra P, Howlett S, Hunter K, Garner VE, Gonzalez-Munoz A, Clark J, Veijola R, Cubbon R, Chen SL, Rosa R, Cumiskey AM, Serreze DV, Gregory S, Rogers J, Lyons PA, Healy B, Smink LJ, Todd JA, Peterson LB, Wicker LS, Santamaria P (2007) Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 39:329–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Zhang W, Ng TW, Wang Y, Liu Q, Gorantla V, Lakkis F, Zheng XX (2011) Adoptive cell therapy using antigen-specific CD4-CD8- T regulatory cells to prevent autoimmune diabetes and promote islet allograft survival in NOD mice. Diabetologia 54:2082–92

    Article  CAS  PubMed  Google Scholar 

  • Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, Winkler C, Ilonen J, Veijola R, Knip M, Bonifacio E, Eisenbarth GS (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309:2473–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all of the animal house staff for aid in maintaining the mouse colonies used in this study.

Funding

This work was supported by the Canadian Diabetes Association (Grant OG-3-13-4018) and the Canadian Institutes of Health Research (Grant PJT 159603) to SL. RC and ANP received scholarships from Diabète Québec and l’Université de Montréal. RC and VD received scholarships from the Fonds de recherche Québec-Santé. SL is a Research Scholars Emeritus from the Fonds de recherche Québec -Santé.

Author information

Authors and Affiliations

Authors

Contributions

RC acquired data, analyzed data, participated in the elaboration of the experimental plan, prepared the figures, and corrected and approved the manuscript. VD acquired data, generated the congenic mice, participated in the elaboration of the experimental plan, and corrected and approved the manuscript. ANP acquired data, analyzed data, participated in the elaboration of the experimental plan, and corrected and approved the manuscript. GCR acquired data and corrected and approved the manuscript. SL participated in the elaboration of the experimental plan, supervised the study, and wrote the manuscript.

Corresponding author

Correspondence to Sylvie Lesage.

Ethics declarations

Ethics approval

The Maisonneuve-Rosemont Hospital ethics committee, overseen by the Canadian Council for Animal Protection, approved the experimental procedures.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collin, R., Dugas, V., Pelletier, AN. et al. Evidence of genetic epistasis in autoimmune diabetes susceptibility revealed by mouse congenic sublines. Immunogenetics 73, 307–319 (2021). https://doi.org/10.1007/s00251-021-01214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-021-01214-9

Keywords

Navigation